52 research outputs found

    A preliminary investigation of materialism and impulsiveness as predictors of technological addictions among young adults

    Get PDF
    Background and aims: The primary objective of the present research is to investigate the drivers of technological addiction in college students — heavy users of Information and Communication Technology (ICT). The study places cell phone and instant messaging addiction in the broader context of consumption pathologies, investigating the influence of materialism and impulsiveness on these two technologies. Clearly, cell phones serve more than just a utilitarian purpose. Cell phones are used in public and play a vital role in the lives of young adults. The accessibility of new technologies, like cell phones, which have the advantages of portability and an ever increasing array of functions, makes their over-use increasingly likely. Methods: College undergraduates (N = 191) from two U.S. universities completed a paper and pencil survey instrument during class. The questionnaire took approximately 15–20 minutes to complete and contained scales that measured materialism, impulsiveness, and mobile phone and instant messaging addiction. Results: Factor analysis supported the discriminant validity of Ehrenberg, Juckes, White and Walsh's (2008) Mobile Phone and Instant Messaging Addictive Tendencies Scale. The path model indicates that both materialism and impulsiveness impact the two addictive tendencies, and that materialism's direct impact on these addictions has a noticeably larger effect on cell phone use than instant messaging. Conclusions: The present study finds that materialism and impulsiveness drive both a dependence on cell phones and instant messaging. As Griffiths (2012) rightly warns, however, researchers must be aware that one's addiction may not simply be to the cell phone, but to a particular activity or function of the cell phone. The emergence of multi-function smart phones requires that research must dig beneath the technology being used to the activities that draw the user to the particular technology

    How “phubbing” becomes the norm: The antecedents and consequences of snubbing via smartphone

    Get PDF
    Smartphones allow people to connect with others from almost anywhere at any time. However, there is growing concern that smartphones may actually sometimes detract, rather than complement, social interactions. The term “phubbing” represents the act of snubbing someone in a social setting by concentrating on one’s phone instead of talking to the person directly. The current study was designed to examine some of the psychological antecedents and consequences of phubbing behavior. We examined the contributing roles of Internet addiction, fear of missing out, self-control, and smartphone addiction, and how the frequency of phubbing behavior and of being phubbed may both lead to the perception that phubbing is normative. The results revealed that Internet addiction, fear of missing out, and self-control predicted smartphone addiction, which in turn predicted the extent to which people phub. This path also predicted the extent to which people feel that phubbing is normative, both via (a) the extent to which people are phubbed themselves, and (b) independently. Further, gender moderated the relationship between the extent to which people are phubbed and their perception that phubbing is normative. The present findings suggest that phubbing is an important factor in modern communication that warrants further investigation

    New CAST limit on the axion-photon interaction

    Get PDF
    Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013-2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, we report the best limit on the axion-photon coupling strength (0.66 × 10 -10 GeV -1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds

    Effect of within-session breaks in play on responsible gambling behaviour during sustained monetary losses

    Get PDF
    Rapid, continuous gambling formats are associated with higher risks for gambling-related harm in terms of excessive monetary and time expenditure. The current study investigated the effect on gambling response latency and persistence, of a new form of within-game intervention that required players to actively engage in response inhibition via monitoring for stop signals. Seventy-four experienced electronic gaming machine gamblers, with a mean age of 35.28 years, were recruited to participate in a rapid, continuous gambling task where real money could be won and lost. Participants were randomly allocated to either the control condition where no intervention was presented, or either a condition with a passive three minute break in play or a condition with a three minute intervention that required participants to engage in response inhibition. Although there was no main effect for experimental condition on gambling persistence, both interventions were effective in elevating response latency during a period of sustained losses. It was concluded that within-game interventions that create an enforced break in play are effective in increasing response latency between bets during periods of sustained losses. Furthermore, within-game interventions that require active involvement appear to be more effective in increasing response latency than standard, passive breaks in play

    Improved search for solar chameleons with a GridPix detector at CAST

    Get PDF
    We report on a new search for solar chameleons with the CERN Axion Solar Telescope (CAST). A GridPix detector was used to search for soft X-ray photons in the energy range from 200 eV to 10 keV from converted solar chameleons. No significant excess over the expected background has been observed in the data taken in 2014 and 2015. We set an improved limit on the chameleon photon coupling, beta(gamma) less than or similar to 5.7 x 10(10) for 1 < beta(m) < 10(6) at 95% C.L. improving our previous results by a factor two and for the first time reaching sensitivity below the solar luminosity bound for tachocline magnetic fields up to 12.5 T

    Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm

    Get PDF
    We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussedThe NEXT collaboration acknowledges funding support from the following agencies and institutions: European Research Council under Advanced Grant 339787-NEXT and Starting Grant 240054-TREX, Spanish Ministerio de Economia y Competitividad under grants Consolider-Ingenio 2010 CSD2008-0037 (CUP) and CSD2007-00042 (CPAN), contracts FPA2008-03456 and FPA2009-13697; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER under grant PPTDC/FIS/103860/2008; US Department Of Energy under contract DE-AC02-05CH11231.Gonzalez Diaz, D.; Álvarez Puerta, V.; Borges, FIG.; Camargo, M.; Carcel, S.; Cebrian, S.; Cervera, A.... (2015). Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 804:8-24. https://doi.org/10.1016/j.nima.2015.08.033S82480

    Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Get PDF
    [EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.Azevedo, C.; Gonzalez-Diaz, D.; Biagi, SF.; Oliveira, CAB.; Henriques, CAO.; Escada, J.; Monrabal, F.... (2018). Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 877:157-172. https://doi.org/10.1016/j.nima.2017.08.049S15717287
    corecore