119 research outputs found
H.E.S.S. observations of gamma-ray bursts in 2003-2007
Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray
bursts (GRBs) in some scenarios. Exploring this photon energy regime is
necessary for understanding the energetics and properties of GRBs. GRBs have
been one of the prime targets for the H.E.S.S. experiment, which makes use of
four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays.
Dedicated observations of 32 GRB positions were made in the years 2003-2007 and
a search for VHE gamma-ray counterparts of these GRBs was made. Depending on
the visibility and observing conditions, the observations mostly start minutes
to hours after the burst and typically last two hours. Results from
observations of 22 GRB positions are presented and evidence of a VHE signal was
found neither in observations of any individual GRBs, nor from stacking data
from subsets of GRBs with higher expected VHE flux according to a
model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from
the GRB positions were derived. For those GRBs with measured redshifts,
differential upper limits at the energy threshold after correcting for
absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure
Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum
Axionlike particles (ALPs) are hypothetical light (sub-eV) bosons predicted in some extensions of the Standard Model of particle physics. In astrophysical environments comprising high-energy gamma rays and turbulent magnetic fields, the existence of ALPs can modify the energy spectrum of the gamma rays for a sufficiently large coupling between ALPs and photons. This modification would take the form of an irregular behavior of the energy spectrum in a limited energy range. Data from the H.E.S.S. observations of the distant BL Lac object PKS 2155-304 (z=0.116) are used to derive upper limits at the 95% C.L. on the strength of the ALP coupling to photons, ggammaa<2.1×10-11GeV-1 for an ALP mass between 15 and 60 neV. The results depend on assumptions on the magnetic field around the source, which are chosen conservatively. The derived constraints apply to both light pseudoscalar and scalar bosons that couple to the electromagnetic fieldFil: Medina, Maria Clementina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); ArgentinaFil: H.E.S. S. collaboration
Simultaneous observations of PKS 2155-304 with H.E.S.S., Fermi, RXTE and ATOM: spectral energy distributions and variability in a low state
We report on the first simultaneous observations that cover the optical,
X-ray, and high energy gamma-ray bands of the BL Lac object PKS 2155-304. The
gamma-ray bands were observed for 11 days, between 25 August and 6 September
2008, jointly with the Fermi Gamma-ray Space Telescope and the H.E.S.S.
atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral
energy distribution with the new generation of gamma-ray telescopes. The ATOM
telescope and the RXTE and Swift observatories provided optical and X-ray
coverage of the low-energy component over the same time period. The object was
close to the lowest archival X-ray and Very High Energy state, whereas the
optical flux was much higher. The light curves show relatively little (~30%$)
variability overall when compared to past flaring episodes, but we find a clear
optical/VHE correlation and evidence for a correlation of the X-rays with the
high energy spectral index. Contrary to previous observations in the flaring
state, we do not find any correlation between the X-ray and VHE components.
Although synchrotron self-Compton models are often invoked to explain the SEDs
of BL Lac objects, the most common versions of these models are at odds with
the correlated variability we find in the various bands for PKS 2155-304.Comment: Accepted for publication in the Astrophysical Journa
The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87
Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and
very massive black hole provides a unique opportunity to investigate the origin
of very high energy (VHE; E>100 GeV) gamma-ray emission generated in
relativistic outflows and the surroundings of super-massive black holes. M 87
has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray
emission displays strong variability on timescales as short as a day. In this
paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and
VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE
was detected triggering further observations at VHE (H.E.S.S.), X-rays
(Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray
light curve enables one to derive a precise temporal characterization of the
flare: the single, isolated flare is well described by a two-sided exponential
function with significantly different flux rise and decay times. While the
overall variability pattern of the 2010 flare appears somewhat different from
that of previous VHE flares in 2005 and 2008, they share very similar
timescales (~day), peak fluxes (Phi(>0.35 TeV) ~= (1-3) x 10^-11 ph cm^-2
s^-1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions
indicate no enhanced flux in 2010 in contrast to observations in 2008, where an
increase of the radio flux of the innermost core regions coincided with a VHE
flare. On the other hand, Chandra X-ray observations taken ~3 days after the
peak of the VHE gamma-ray emission reveal an enhanced flux from the core. The
long-term (2001-2010) multi-wavelength light curve of M 87, spanning from radio
to VHE and including data from HST, LT, VLA and EVN, is used to further
investigate the origin of the VHE gamma-ray emission. No unique, common MWL
signature of the three VHE flares has been identified.Comment: 19 pages, 5 figures; Corresponding authors: M. Raue, L. Stawarz, D.
Mazin, P. Colin, C. M. Hui, M. Beilicke; Fig. 1 lightcurve data available
online: http://www.desy.de/~mraue/m87
Very high energy gamma-ray observations of the galaxy clusters Abell 496 and Abell 85 with HESS
Aims. The nearby galaxy clusters Abell 496 and Abell 85 are studied in the very high-energy (VHE, E > 100 GeV) band to investigate VHE cosmic rays (CRs) in this class of objects which are the largest gravitationally bound systems in the Universe. Methods. HESS, an array of four imaging atmospheric cherenkov telescopes (IACT), was used to observe the targets in the range of VHE gamma rays. Results. No significant gamma-ray signal is found at the respective position of the two clusters with several different source size assumptions for each target. In particular, emission regions corresponding to the high-density core, to the extension of the entire X-ray emission in these clusters, and to the very extended region where the accretion shock is expected are investigated. Upper limits are derived for the gamma-ray flux at energies E > 570 GeV for Abell 496 and E > 460 GeV for Abell 85. Conclusions. From the non-detection in VHE gamma rays, upper limits on the total energy of hadronic CRs in the clusters are calculated. If the cosmic-ray energy density follows the large-scale gas density profile, the limit on the fraction of energy in these non-thermal particles with respect to the total thermal energy of the intra-cluster medium (ICM) is 51% for Abell 496 and only 8% for Abell 85 due to its higher mass and higher gas density. These upper limits are compared with theoretical estimates. They predict about ~10% of the thermal energy of the ICM in non-thermal particles. The observations presented here can constrain these predictions especially for the case of the Abell 85 cluster.F. Aharonian...G. Rowell...A. Zech, et a
- …