129 research outputs found
Resultat du traitement dâun craniopharyngiome kystique par de la bleomycine
Introduction Le craniopharyngiome est une tumeur bénigne qui provient de nids épithéliaux ou de zones de métaplasies squameuses liées à l’embryogenèse hypophysaire. Touchant surtout l’enfant, peut être potentiellement agressive et caractérisée par un taux élevé de récidive après traitement chirurgical. La bléomycine représente une des molécules de chimiothérapie utilisée souvent dans le traitement insitu dans le craniopharyngiome kystique. L’objectif de notre étude est d’évaluer les résultats clinique et radiologique du traitement d’un craniopharyngiome par la bléomycine et comparer notre expérience à celle de la littérature. Observation Nous avons analysé le dossier de la patiente B. Rania âgée de 11 ans. Elle présente un craniopharyngiome kystique intra et supra sellaire à extension frontale, traité par chimiothérapie intra tumorale (bléomycine), durant la période allant de 2003 à 2004 et suivi jusqu’à présent au service de neurochirurgie du CHU de Annaba- Algérie. Résultat La patiente présentait à son admission une hypertension intracrânienne et une somnolence depuis 24 heures d’où sa ponction en urgence à travers le réservoir d’Ommaya déjà placé auparavant dans un autre service de neurochirurgie. Quatre mois plus tard, la patiente a bénéficié d’un cycle de chimiothérapie étalé sur une période de 20 jours, la dose totale de bléomycine était de 51,5mg soit 2 à 3 mg par dose avec un espacement de 48 à 72 heures ; le volume de la tumeur avant la chimiothérapie était de 46 mm dans son grand axe, à la fin du traitement par la bléomycine, nous constatons une calcification total du kyste après un contrôle scannographique en 2007. Conclusion Le traitement du craniopharyngiome par la bléomycine insitu a donné des résultats satisfaisants. Notre expérience est la première à l’échelle nationale. En espérant que cette expérience se généralise en Algérie afin de mieux nous éclairés à l’avenir.Mots clés : Craniopharyngiome, réservoir d’Ommaya, bléomycine, calcification
Impedance spectroscopy, electrical relaxation and Ac conductivity studies of organic-inorganic hybrid compound: NH3(C6H4)2NH3HgCl4
OrganicĂąâŹâinorganic hybrid sample NH3(C6H4)2NH3HgCl4 was characterized by differential scanning calorimetry (DSC), TGA analysis and electrical impedance spectroscopy. DSC studies indicated the presence of a one-phase transition at 391 K. As for the ac conductivity of the compound NH3(C6H4)2NH3HgCl4, it has been measured in the temperature range of 358 - 413K and the frequency range of 209 HzĂąâŹâ5 MHz. Concerning the ZĂąâŹâą and ZĂąâŹâąĂąâŹâą versus frequency plots, they were well-fitted to an equivalent circuit model. The equivalent circuit is composed of a series of combination of two parallel (R//CPE) circuits. Besides, the frequency dependence of the conductivity was interpreted in terms of Jonscher's law ĂÆ(Ăâ°) = ĂÆdc +A Ăâ°n. Ă As regards the conductivity, it follows the Arrhenius relation. The variation of the value of the conductivity with temperatures confirmed the availability of the phase transition at 391K detected by DSC and electrical measurements
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively
Confusions in orbivirus protein classification
An extensive comparative analysis of orbivirus genomes revealed four cases of unclear numeration and protein designation, due to confused reference to protein size or segment size by which they are encoded. A concise nomenclature based on type species, sequence homology and functional characteristics independent of segment or protein size is suggested
Detection of a Fourth Orbivirus Non-Structural Protein
The genus Orbivirus includes both insect and tick-borne viruses. The orbivirus genome, composed of 10 segments of dsRNA, encodes 7 structural proteins (VP1âVP7) and 3 non-structural proteins (NS1âNS3). An open reading frame (ORF) that spans almost the entire length of genome segment-9 (Seg-9) encodes VP6 (the viral helicase). However, bioinformatic analysis recently identified an overlapping ORF (ORFX) in Seg-9. We show that ORFX encodes a new non-structural protein, identified here as NS4. Western blotting and confocal fluorescence microscopy, using antibodies raised against recombinant NS4 from Bluetongue virus (BTV, which is insect-borne), or Great Island virus (GIV, which is tick-borne), demonstrate that these proteins are synthesised in BTV or GIV infected mammalian cells, respectively. BTV NS4 is also expressed in Culicoides insect cells. NS4 forms aggregates throughout the cytoplasm as well as in the nucleus, consistent with identification of nuclear localisation signals within the NS4 sequence. Bioinformatic analyses indicate that NS4 contains coiled-coils, is related to proteins that bind nucleic acids, or are associated with membranes and shows similarities to nucleolar protein UTP20 (a processome subunit). Recombinant NS4 of GIV protects dsRNA from degradation by endoribonucleases of the RNAse III family, indicating that it interacts with dsRNA. However, BTV NS4, which is only half the putative size of the GIV NS4, did not protect dsRNA from RNAse III cleavage. NS4 of both GIV and BTV protect DNA from degradation by DNAse. NS4 was found to associate with lipid droplets in cells infected with BTV or GIV or transfected with a plasmid expressing NS4
Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species
The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses
Widespread exploitation of the honeybee by early Neolithic farmers.
This is the author's version of an article subsequently published in Nature. The definitive version is available from the publisher via: doi: 10.1038/nature15757.Copyright © 2015, Rights Managed by Nature Publishing GroupThe pressures on honeybee (Apis mellifera) populations, resulting from threats by modern pesticides, parasites, predators and diseases, have raised awareness of the economic importance and critical role this insect plays in agricultural societies across the globe. However, the association of humans with A. mellifera predates post-industrial-revolution agriculture, as evidenced by the widespread presence of ancient Egyptian bee iconography dating to the Old Kingdom (approximately 2400 BC). There are also indications of Stone Age people harvesting bee products; for example, honey hunting is interpreted from rock art in a prehistoric Holocene context and a beeswax find in a pre-agriculturalist site. However, when and where the regular association of A. mellifera with agriculturalists emerged is unknown. One of the major products of A. mellifera is beeswax, which is composed of a complex suite of lipids including n-alkanes, n-alkanoic acids and fatty acyl wax esters. The composition is highly constant as it is determined genetically through the insect's biochemistry. Thus, the chemical 'fingerprint' of beeswax provides a reliable basis for detecting this commodity in organic residues preserved at archaeological sites, which we now use to trace the exploitation by humans of A. mellifera temporally and spatially. Here we present secure identifications of beeswax in lipid residues preserved in pottery vessels of Neolithic Old World farmers. The geographical range of bee product exploitation is traced in Neolithic Europe, the Near East and North Africa, providing the palaeoecological range of honeybees during prehistory. Temporally, we demonstrate that bee products were exploited continuously, and probably extensively in some regions, at least from the seventh millennium cal BC, likely fulfilling a variety of technological and cultural functions. The close association of A. mellifera with Neolithic farming communities dates to the early onset of agriculture and may provide evidence for the beginnings of a domestication process.Natural Environment Research Council (NERC)English HeritageEuropean Research Council (ERC)Leverhulme TrustMinistĂšre de la Culture et de la CommunicationMinistĂšre de lâEnseignement SupĂ©rieur et de la RechercheRoyal SocietyWellcome Trus
An Equine Herpesvirus Type 1 (EHV-1) Expressing VP2 and VP5 of Serotype 8 Bluetongue Virus (BTV-8) Induces Protection in a Murine Infection Model
Bluetongue virus (BTV) can infect most species of domestic and wild ruminants causing substantial morbidity and mortality and, consequently, high economic losses. In 2006, an epizootic of BTV serotype 8 (BTV-8) started in northern Europe that caused significant disease in cattle and sheep before comprehensive vaccination was introduced two years later. Here, we evaluate the potential of equine herpesvirus type 1 (EHV-1), an alphaherpesvirus, as a novel vectored DIVA (differentiating infected from vaccinated animals) vaccine expressing VP2 of BTV-8 alone or in combination with VP5. The EHV-1 recombinant viruses stably expressed the transgenes and grew with kinetics that were identical to those of parental virus in vitro. After immunization of mice, a BTV-8-specific neutralizing antibody response was elicited. In a challenge experiment using a lethal dose of BTV-8, 100% of interferon-receptor-deficient (IFNARâ/â) mice vaccinated with the recombinant EHV-1 carrying both VP2 and VP5, but not VP2 alone, survived. VP7 was not included in the vectored vaccines and was successfully used as a DIVA marker. In summary, we show that EHV-1 expressing BTV-8 VP2 and VP5 is capable of eliciting a protective immune response that is distinguishable from that after infection and as such may be an alternative for BTV vaccination strategies in which DIVA compatibility is of importance
Isolates of Liao Ning Virus from Wild-Caught Mosquitoes in the Xinjiang Province of China in 2005
Liao ning virus (LNV) is related to Banna virus, a known human-pathogen present in south-east Asia. Both viruses belong to the genus Seadornavirus, family Reoviridae. LNV causes lethal haemorrhage in experimentally infected mice. Twenty seven isolates of LNV were made from mosquitoes collected in different locations within the Xinjiang province of north-western China during 2005. These mosquitoes were caught in the accommodation of human patients with febrile manifestations, or in animal barns where sheep represent the main livestock species. The regions where LNV was isolated are affected by seasonal encephalitis, but are free of Japanese encephalitis (JE). Genome segment 10 (Seg-10) (encoding cell-attachment and serotype-determining protein VP10) and Seg-12 (encoding non-structural protein VP12) were sequenced for multiple LNV isolates. Phylogenetic analyses showed a less homogenous Seg-10 gene pool, as compared to segment 12. However, all of these isolates appear to belong to LNV type-1. These data suggest a relatively recent introduction of LNV into Xinjiang province, with substitution rates for LNV Seg-10 and Seg-12, respectively, of 2.29Ă10â4 and 1.57Ă10â4 substitutions/nt/year. These substitution rates are similar to those estimated for other dsRNA viruses. Our data indicate that the history of LNV is characterized by a lack of demographic fluctuations. However, a decline in the LNV population in the late 1980s - early 1990s, was indicated by data for both Seg-10 and Seg-12. Data also suggest a beginning of an expansion in the late 1990s as inferred from Seg-12 skyline plot
- âŠ