58 research outputs found

    My social comfort zone: Attachment anxiety shapes peripersonal and interpersonal space

    Get PDF
    Following positive social exchanges, the neural representation of interactive space around the body (peripersonal space; PPS) expands, while we also feel consciously more comfortable being closer to others (interpersonal distance; ID). However, it is unclear how relational traits, such as attachment styles, interact with the social malleability of our PPS and ID. A first, exploratory study (N=48) using a visuo-tactile, augmented reality task, found that PPS depended on the combined effects of social context and attachment anxiety. A follow-up preregistered study (N=68), showed that those with high attachment anxiety show a sharper differentiation between peripersonal and extrapersonal space, even in a non-social context. A final, preregistered, large-scale survey (N=19,417), found that people scoring high in attachment anxiety prefer closer ID and differentiate their ID less based on feelings of social closeness. We conclude that attachment anxiety reduces the social malleability of both peripersonal and interpersonal space

    Using High Frequency Transcranial Random Noise Stimulation to Modulate Face Memory Performance in Younger and Older Adults: Lessons Learnt From Mixed Findings

    Get PDF
    High-frequency transcranial random noise stimulation (tRNS) has been shown to improve a range of cognitive and perceptual abilities. Here we sought to examine the effects of a single session of tRNS targeted at the ventrolateral prefrontal cortices (VLPFC) on face memory in younger and older adults. To do so, we conducted three experiments. In Experiment 1, we found that younger adults receiving active tRNS outperformed those receiving sham stimulation (i.e., using a between-participant factor for stimulation condition; Experiment 1). This effect was not observed for object memory (car memory) in younger adults (Experiment 2), indicating that the effect is not a general memory effect. In Experiment 3, we sought to replicate the effects of Experiment 1 using a different design (within-participant factor of stimulation – active or sham tRNS to the same individual) and to extend the study by including older adult participants. In contrast to Experiment 1, we found that active tRNS relative to sham tRNS reduced face memory performance in both younger and older adults. We also found that the degree of decline in performance in the active tRNS relative to sham tRNS condition was predicted by baseline ability, with higher performing participants showing the largest decreases in performance. Overall, the results indicate that tRNS to the VLPFC modulates face memory, but that there may be performance and protocol specific moderators of this effect. We discuss these findings in the context of the broader literature showing the importance of individual variation in the outcome of non-invasive brain stimulation intervention approaches. We conclude that while tRNS may have potential as an intervention approach, generalizing from single experiment studies to wide application is risky and caution should be adopted in interpreting findings

    The Oxford Face Matching Test: A non-biased test of the full range of individual differences in face perception.

    Get PDF
    Tests of face processing are typically designed to identify individuals performing outside of the typical range; either prosopagnosic individuals who exhibit poor face processing ability, or super recognisers, who have superior face processing abilities. Here we describe the development of the Oxford Face Matching Test (OFMT), designed to identify individual differences in face processing across the full range of performance, from prosopagnosia, through the range of typical performance, to super recognisers. Such a test requires items of varying difficulty, but establishing difficulty is problematic when particular populations (e.g., prosopagnosics, individuals with autism spectrum disorder) may use atypical strategies to process faces. If item difficulty is calibrated on neurotypical individuals, then the test may be poorly calibrated for atypical groups, and vice versa. To obtain items of varying difficulty, we used facial recognition algorithms to obtain face pair similarity ratings that are not biased towards specific populations. These face pairs were used as stimuli in the OFMT, and participants were required to judge whether the face images depicted the same individual or different individuals. Across five studies the OFMT was shown to be sensitive to individual differences in the typical population, and in groups of both prosopagnosic individuals and super recognisers. The test-retest reliability of the task was at least equivalent to the Cambridge Face Memory Test and the Glasgow Face Matching Test. Furthermore, results reveal, at least at the group level, that both face perception and face memory are poor in those with prosopagnosia, and are good in super recognisers

    Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations

    Get PDF
    Creative cognition requires mental exploration of remotely connected concepts while suppressing dominant ones. Across four experiments using different samples of participants, we provide evidence that right temporal alpha oscillations play a crucial role in inhibiting habitual thinking modes, thereby paving the way for accessing more remote ideas. In the first experiment, participants completed the compound remote associate task (RAT) in three separate sessions: during right temporal cortex alpha (10 Hz) tACS, left temporal alpha tACS, and sham tACS. Participants performed better under right tACS only on RAT items in which two of the three words shared misleading semantic associations. In the second experiment, we measured EEG while the participants solved RAT items with or without shared misleading associations. We observed an increase in right temporal alpha power when participants correctly solved RAT items with misleading semantic associations. The third experiment demonstrated that while solving divergent thinking tasks, participants came up with more remote ideas when stimulated by right temporal alpha tACS. In the fourth experiment, we found that participants showed higher right temporal alpha power when generating more remote uses for common objects. These studies altogether indicate that right temporal alpha oscillations may support creativity by acting as a neural mechanism for an active inhibition of obvious semantic associations

    The emergence of synaesthesia in a Neuronal Network Model via changes in perceptual sensitivity and plasticity

    Get PDF
    Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing

    Trait phenomenological control predicts experience of mirror synaesthesia and the rubber hand illusion

    Get PDF
    In hypnotic responding, expectancies arising from imaginative suggestion drive striking experiential changes (e.g., hallucinations) — which are experienced as involuntary — according to a normally distributed and stable trait ability (hypnotisability). Such experiences can be triggered by implicit suggestion and occur outside the hypnotic context. In large sample studies (of 156, 404 and 353 participants), we report substantial relationships between hypnotisability and experimental measures of experiential change in mirror-sensory synaesthesia and the rubber hand illusion comparable to relationships between hypnotisability and individual hypnosis scale items. The control of phenomenology to meet expectancies arising from perceived task requirements can account for experiential change in psychological experiments

    I Feel what You Feel if You Are Similar to Me

    Get PDF
    Social interactions are influenced by the perception of others as similar or dissimilar to the self. Such judgements could depend on physical and semantic characteristics, such as membership in an ethnic or political group. In the present study we tested whether social representations of the self and of others could affect the perception of touch. To this aim, we assessed tactile perception on the face when subjects observed a face being touched by fingers. In different conditions we manipulated the identity of the shown face. In a first experiment, Caucasian and Maghrebian participants viewed a face belonging either to their own or to a different ethnic group; in a second experiment, Liberal and Conservative politically active participants viewed faces of politicians belonging to their own or to the opposite political party. The results showed that viewing a touched face most strongly enhanced the perception of touch on the observer's face when the observed face belonged to his/her own ethnic or political group

    Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease

    Get PDF
    Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy

    Cerebellar Asymmetry and Cortical Connectivity in Monozygotic Twins with Discordant Handedness

    Get PDF
    Handedness differentiates patterns of neural asymmetry and interhemispheric connectivity in cortical systems that underpin manual and language functions. Contemporary models of cerebellar function incorporate complex motor behaviour and higher-order cognition, expanding upon earlier, traditional associations between the cerebellum and motor control. Structural MRI defined cerebellar volume asymmetries and correlations with corpus callosum (CC) size were compared in 19 pairs of adult female monozygotic twins strongly discordant for handedness (MZHd). Volume and asymmetry of cerebellar lobules were obtained using automated parcellation.CC area and regional widths were obtained from midsagittal planimetric measurements. Within the cerebellum and CC, neurofunctional distinctions were drawn between motor and higher-order cognitive systems. Relationships amongst regional cerebellar asymmetry and cortical connectivity (as indicated by CC widths) were investigated. Interactions between hemisphere and handedness in the anterior cerebellum were due to a larger right-greater-than-left hemispheric asymmetry in right-handed (RH) compared to left-handed (LH) twins. In LH twins only, anterior cerebellar lobule volumes (IV, V) for motor control were associated with CC size, particularly in callosal regions associated with motor cortex connectivity. Superior posterior cerebellar lobule volumes (VI, Crus I, Crus II, VIIb) showed no correlation with CC size in either handedness group. These novel results reflected distinct patterns of cerebellar-cortical relationships delineated by specific CC regions and an anterior-posterior cerebellar topographical mapping. Hence, anterior cerebellar asymmetry may contribute to the greater degree of bilateral cortical organisation of frontal motor function in LH individuals
    corecore