96 research outputs found

    Type Ia supernova constraints on compact object dark matter

    Full text link
    The nature of dark matter (DM) is an open question in cosmology, despite its abundance in the universe. While elementary particles have been posited to explain DM, compact astrophysical objects such as black holes formed in the early universe offer a theoretically appealing alternate route. Here, we constrain the fraction of DM that can be made up of primordial black holes (PBHs) with masses M≳0.01M⊙M \gtrsim 0.01 M_\odot, using the Type Ia supernova Hubble diagram. Utilizing the Dyer-Roeder distance relation, where the homogeneous matter fraction is parameterized with η\eta, we find a maximum fractional amount of DM in compact objects (fpf_p) of 0.50 at 95\% confidence level (C.L.), in the flat Λ\LambdaCDM model and 0.49 when marginalising over a constant dark energy equation of state. These limits do not change when marginalising over cosmic curvature, demonstrating the robustness to the cosmological model. When allowing for the prior on η\eta to include η>1\eta > 1, we derive fp<0.32f_p < 0.32 at 95%\% C.L., showing that the prior assumption of η≤1\eta \leq 1 gives a conservative upper limit on fpf_p. When including Cepheid calibrated supernovae, the 95\% C.L. constraints improve to fp<0.25f_p < 0.25. We find that the estimate for the Hubble constant in our inference is consistent with the homogeneous case, showing that inhomogeneities in the form of compact dark matter cannot account for the observed Hubble tension. In conclusion, we strongly exclude the possibility that PBHs with stellar masses and above form a dominant fraction of the dark matter.Comment: to be submitted to MNRAS Letter

    Limiting the dimming of distant type Ia supernovae

    Full text link
    Distant supernovae have been observed to be fainter than what is expected in a matter dominated universe. The most likely explanation is that the universe is dominated by an energy component with negative pressure -- dark energy. However, there are several astrophysical processes that could, in principle, affect the measurements and in order to be able to take advantage of the growing supernova statistics, the control of systematic effects is crucial. We discuss two of these; extinction due to intergalactic grey dust and dimming due to photon-axion oscillations and show how their effect on supernova observations can be constrained using observed quasar colours and spectra. For a wide range of intergalactic dust models, we are able to rule out any dimming larger than 0.2 magnitudes for a type Ia supernova at z=1. The corresponding limit for intergalactic Milky Way type dust is 0.03 mag. For the more speculative model of photons mixing with axions, we find that the effect is independent of photon energy for certain combinations of parameter values and a dimming as large as 0.6 magnitudes cannot be ruled out. These effects can have profound implications for the possibility of constraining dark energy properties using supernova observations.Comment: 19 pages, 11 figures Matches version accepted in JCAP. Some corrections due to minor bug in simulations, major conclusions unchange

    Growth Histories in Bimetric Massive Gravity

    Full text link
    We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.Comment: 28 pages + appendix, 11 figure

    Constraining dark energy fluctuations with supernova correlations

    Full text link
    We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state is not equal to -1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.Comment: 18 pages, 6 figures, matches the published versio

    Spectral Signatures of Photon-Particle Oscillations from Celestial Objects

    Full text link
    We give detailed predictions for the spectral signatures arising from photon-particle oscillations in astrophysical objects. The calculations include quantum electrodynamic effects as well as those due to active relativistic plasma. We show that, by studying the spectra of compact sources, it may be possible to directly detect (pseudo-)scalar particles, such as the axion, with much greater sensitivity, by roughly three orders of magnitude, than is currently achievable by other methods. In particular, if such particles exist with masses m_a<0.01[eV] and coupling constant to the electromagnetic field, g>1e-13[1/GeV], then their oscillation signatures are likely to be lurking in the spectra of magnetars, pulsars, and quasars.Comment: 29 pages (reduced resolution for figs. 3, 4b, 7

    Constraining dark matter halo properties using lensed SNLS supernovae

    Full text link
    This paper exploits the gravitational magnification of SNe Ia to measure properties of dark matter haloes. The magnification of individual SNe Ia can be computed using observed properties of foreground galaxies and dark matter halo models. We model the dark matter haloes of the galaxies as truncated singular isothermal spheres with velocity dispersion and truncation radius obeying luminosity dependent scaling laws. A homogeneously selected sample of 175 SNe Ia from the first 3-years of the Supernova Legacy Survey (SNLS) in the redshift range 0.2 < z < 1 is used to constrain models of the dark matter haloes associated with foreground galaxies. The best-fitting velocity dispersion scaling law agrees well with galaxy-galaxy lensing measurements. We further find that the normalisation of the velocity dispersion of passive and star forming galaxies are consistent with empirical Faber-Jackson and Tully-Fisher relations, respectively. If we make no assumption on the normalisation of these relations, we find that the data prefer gravitational lensing at the 92 per cent confidence level. Using recent models of dust extinction we deduce that the impact of this effect on our results is very small. We also investigate the brightness scatter of SNe Ia due to gravitational lensing. The gravitational lensing scatter is approximately proportional to the SN Ia redshift. We find the constant of proportionality to be B = 0.055 +0.039 -0.041 mag (B < 0.12 mag at the 95 per cent confidence level). If this model is correct, the contribution from lensing to the intrinsic brightness scatter of SNe Ia is small for the SNLS sample.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    Near-IR Search for Lensed Supernovae Behind Galaxy Clusters - II. First Detection and Future Prospects

    Get PDF
    Powerful gravitational telescopes in the form of massive galaxy clusters can be used to enhance the light collecting power over a limited field of view by about an order of magnitude in flux. This effect is exploited here to increase the depth of a survey for lensed supernovae at near-IR wavelengths. A pilot SN search program conducted with the ISAAC camera at VLT is presented. Lensed galaxies behind the massive clusters A1689, A1835 and AC114 were observed for a total of 20 hours split into 2, 3 and 4 epochs respectively, separated by approximately one month to a limiting magnitude J<24 (Vega). Image subtractions including another 20 hours worth of archival ISAAC/VLT data were used to search for transients with lightcurve properties consistent with redshifted supernovae, both in the new and reference data. The feasibility of finding lensed supernovae in our survey was investigated using synthetic lightcurves of supernovae and several models of the volumetric Type Ia and core-collapse supernova rates as a function of redshift. We also estimate the number of supernova discoveries expected from the inferred star formation rate in the observed galaxies. The methods consistently predict a Poisson mean value for the expected number of SNe in the survey between N_SN=0.8 and 1.6 for all supernova types, evenly distributed between core collapse and Type Ia SN. One transient object was found behind A1689, 0.5" from a galaxy with photometric redshift z_gal=0.6 +- 0.15. The lightcurve and colors of the transient are consistent with being a reddened Type IIP SN at z_SN=0.59. The lensing model predicts 1.4 magnitudes of magnification at the location of the transient, without which this object would not have been detected in the near-IR ground based search described in this paper (unlensed magnitude J~25). (abridged)Comment: Accepted by AA, matches journal versio

    Near-IR search for lensed supernovae behind galaxy clusters: I. Observations and transient detection efficiency

    Full text link
    Massive galaxy clusters at intermediate redshift can magnify the flux of distant background sources by several magnitudes and we exploit this effect to search for lensed distant supernovae that may otherwise be too faint to be detected. A supernova search was conducted at near infrared wavelengths using the ISAAC instrument at the VLT. The galaxy clusters Abell 1689, Abell 1835 and AC114 were observed at multiple epochs of 2 hours of exposure time, separated by a month. Image-subtraction techniques were used to search for transient objects with light curve properties consistent with supernovae, both in our new and archival ISAAC/VLT data. The limiting magnitude of the individual epochs was estimated by adding artificial stars to the subtracted images. Most of the epochs reach 90% detection efficiency at SZ(J) ~= 23.8-24.0 mag (Vega). Two transient objects, both in archival images of Abell 1689 and AC114, were detected. The transient in AC114 coincides - within the position uncertainty - with an X-ray source and is likely to be a variable AGN at the cluster redshift. The transient in Abell 1689 was found at SZ=23.24 mag, ~0.5 arcsec away from a galaxy with photometric redshift z=0.6 +/-0.15. The light curves and the colors of the transient are consistent with a reddened Type IIP supernova at redshift z=0.59 +/- 0.05. The lensing model of Abell 1689 predicts ~1.4 mag of magnification at the position of the transient, making it the most magnified supernova ever found and only the second supernova found behind a galaxy cluster. Our pilot survey has demonstrated the feasibility to find distant gravitationally magnified supernovae behind massive galaxy clusters. One likely supernova was found behind Abell 1689, in accordance with the expectations for this survey, as shown in an accompanying analysis paper.Comment: Language-edited version, 9 pages, 6 figures, accepted by A&
    • …
    corecore