20 research outputs found
Plasma Advanced Glycation End Products and Dicarbonyl Compounds Are Not Associated with Coronary Atherosclerosis in Athletes
Purpose Coronary atherosclerosis is the leading cause of sudden death among athletes >35 yr old, but current cardiovascular risk prediction algorithms have not been validated for athletes. Advanced glycation end products (AGE) and dicarbonyl compounds have been associated with atherosclerosis and rupture-prone plaques in patients and ex vivo studies. The detection of AGE and dicarbonyl compounds might be a novel screening tool for high-risk coronary atherosclerosis in older athletes. Methods Concentrations of three different AGE and the dicarbonyl compounds methylglyoxal, glyoxal, and 3-deoxyglucosone were measured in plasma with ultraperformance liquid chromatography tandem mass spectrometry in athletes from the Measuring Athletes' Risk of Cardiovascular Events 2 study cohort. Coronary plaques, plaque characteristics (calcified, noncalcified or mixed), and coronary artery calcium (CAC) scores were assessed with coronary computed tomography, and potential associations with AGE and dicarbonyl compounds were analyzed using linear and logistic regression. Results A total of 289 men were included (60 [quartiles 1-3 = 56-66] yr old, body mass index = 24.5 [22.9-26.6] kg·m-2), with a weekly exercise volume of 41 (25-57) MET-hours. Coronary plaques were detected in 241 participants (83%), with a dominant plaque type of calcified plaques in 42%, noncalcified plaques in 12% and mixed plaques in 21%. No AGE or dicarbonyl compounds were associated with total number of plaques or any of the plaque characteristics in adjusted analyses. Similarly, AGE and dicarbonyl compounds were not associated with CAC score. Conclusions Concentrations of plasma AGE and dicarbonyl compounds do not predict the presence of coronary plaques, plaque characteristics or CAC scores, in middle-age and older athletes
The prevalence of cardiac complications and their impact on outcomes in patients with non-traumatic subarachnoid hemorrhage.
Subarachnoid hemorrhage (SAH) is a serious condition, and a myocardial injury or dysfunction could contribute to the outcome. We assessed the prevalence and prognostic impact of cardiac involvement in a cohort with SAH. This is a prospective observational multicenter study. We included 192 patients treated for non-traumatic subarachnoid hemorrhage. We performed ECG recordings, echocardiographic examinations, and blood sampling within 24 h of admission and on days 3 and 7 and at 90 days. The primary endpoint was the evidence of cardiac involvement at 90 days, and the secondary endpoint was to examine the prevalence of a myocardial injury or dysfunction. The median age was 54.5 (interquartile range [IQR] 48.0-64.0) years, 44.3% were male and the median World Federation of Neurological Surgeons (WFNS) score was 2 (IQR 1-4). At day 90, 22/125 patients (17.6%) had left ventricular ejection fractions ≤ 50%, and 2/121 patients (1.7%) had evidence of a diastolic dysfunction as defined by mitral peak E-wave velocity by peak e' velocity (E/e') > 14. There was no prognostic impact from echocardiographic evidence of cardiac complications on neurological outcomes. The overall prevalence of cardiac dysfunction was modest. We found no demographic or SAH-related factors associated with 90 days cardiac dysfunction
Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium.
BACKGROUND: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING: EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research
A pragmatic randomized controlled trial reports lack of efficacy of hydroxychloroquine on coronavirus disease 2019 viral kinetics
Abstract
Here, we randomized 53 patients hospitalized with coronavirus disease 2019 (COVID-19) to hydroxychloroquine therapy (at a dose of 400 mg twice daily for seven days) in addition to standard care or standard care alone (ClinicalTrials.gov Identifier, NCT04316377). All severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients 18 years of age or older were eligible for study inclusion if they had moderately severe COVID-19 at admission. Treatment with hydroxychloroquine did not result in a significantly greater rate of decline in SARS-CoV-2 oropharyngeal viral load compared to standard care alone during the first five days. Our results suggest no important antiviral effect of hydroxychloroquine in humans infected with SARS-CoV-2
Trajectories of cardiac troponin in the decades before cardiovascular death: a longitudinal cohort study
Background:
High-sensitivity cardiac troponin testing is a promising tool for cardiovascular risk prediction, but whether serial testing can dynamically predict risk is uncertain. We evaluated the trajectory of cardiac troponin I in the years prior to a cardiovascular event in the general population, and determine whether serial measurements could track risk within individuals.//
Methods:
In the Whitehall II cohort, high-sensitivity cardiac troponin I concentrations were measured on three occasions over a 15-year period. Time trajectories of troponin were constructed in those who died from cardiovascular disease compared to those who survived or died from other causes during follow up and these were externally validated in the HUNT Study. A joint model that adjusts for cardiovascular risk factors was used to estimate risk of cardiovascular death using serial troponin measurements.//
Results:
In 7,293 individuals (mean 58 ± 7 years, 29.4% women) cardiovascular and non-cardiovascular death occurred in 281 (3.9%) and 914 (12.5%) individuals (median follow-up 21.4 years), respectively. Troponin concentrations increased in those dying from cardiovascular disease with a steeper trajectory compared to those surviving or dying from other causes in Whitehall and HUNT (Pinteraction < 0.05 for both). The joint model demonstrated an independent association between temporal evolution of troponin and risk of cardiovascular death (HR per doubling, 1.45, 95% CI,1.33–1.75).//
Conclusions:
Cardiac troponin I concentrations increased in those dying from cardiovascular disease compared to those surviving or dying from other causes over the preceding decades. Serial cardiac troponin testing in the general population has potential to track future cardiovascular risk./
Trajectories of cardiac troponin in the decades before cardiovascular death : a longitudinal cohort study
Peer reviewe
Trajectories of cardiac troponin in the decades before cardiovascular death: a longitudinal cohort study
Abstract Background High-sensitivity cardiac troponin testing is a promising tool for cardiovascular risk prediction, but whether serial testing can dynamically predict risk is uncertain. We evaluated the trajectory of cardiac troponin I in the years prior to a cardiovascular event in the general population, and determine whether serial measurements could track risk within individuals. Methods In the Whitehall II cohort, high-sensitivity cardiac troponin I concentrations were measured on three occasions over a 15-year period. Time trajectories of troponin were constructed in those who died from cardiovascular disease compared to those who survived or died from other causes during follow up and these were externally validated in the HUNT Study. A joint model that adjusts for cardiovascular risk factors was used to estimate risk of cardiovascular death using serial troponin measurements. Results In 7,293 individuals (mean 58 ± 7 years, 29.4% women) cardiovascular and non-cardiovascular death occurred in 281 (3.9%) and 914 (12.5%) individuals (median follow-up 21.4 years), respectively. Troponin concentrations increased in those dying from cardiovascular disease with a steeper trajectory compared to those surviving or dying from other causes in Whitehall and HUNT (Pinteraction < 0.05 for both). The joint model demonstrated an independent association between temporal evolution of troponin and risk of cardiovascular death (HR per doubling, 1.45, 95% CI,1.33–1.75). Conclusions Cardiac troponin I concentrations increased in those dying from cardiovascular disease compared to those surviving or dying from other causes over the preceding decades. Serial cardiac troponin testing in the general population has potential to track future cardiovascular risk
Genome-wide association study of cardiac troponin i in the general population
Circulating cardiac troponin proteins are associated with structural heart disease and predict incident cardiovascular disease in the general population. However, the genetic contribution to cardiac troponin I (cTnI) concentrations and its causal effect on cardiovascular phenotypes are unclear. We combine data from two large population-based studies, the Trøndelag Health Study and the Generation Scotland Scottish Family Health Study, and perform a genome-wide association study of high-sensitivity cTnI concentrations with 48 115 individuals. We further use two-sample Mendelian randomization to investigate the causal effects of circulating cTnI on acute myocardial infarction (AMI) and heart failure (HF). We identified 12 genetic loci (8 novel) associated with cTnI concentrations. Associated protein-altering variants highlighted putative functional genes: CAND2, HABP2, ANO5, APOH, FHOD3, TNFAIP2, KLKB1 and LMAN1. Phenome-wide association tests in 1688 phecodes and 83 continuous traits in UK Biobank showed associations between a genetic risk score for cTnI and cardiac arrhythmias, metabolic and anthropometric measures. Using two-sample Mendelian randomization, we confirmed the non-causal role of cTnI in AMI (5948 cases, 355 246 controls). We found indications for a causal role of cTnI in HF (47 309 cases and 930 014 controls), but this was not supported by secondary analyses using left ventricular mass as outcome (18 257 individuals). Our findings clarify the biology underlying the heritable contribution to circulating cTnI and support cTnI as a non-causal biomarker for AMI in the general population. Using genetically informed methods for causal inference helps inform the role and value of measuring cTnI in the general population