61 research outputs found

    Effects of LL-37 on Gingival Fibroblasts: A Role in Periodontal Tissue Remodeling?

    Get PDF
    Mounting evidence suggests that the host defence peptide, LL-37, plays a role in both inflammation and in wound healing; however, the role of this peptide in the remodeling and maintenance of oral tissues is not yet fully understood. Fibroblasts are the most abundant cell type within the periodontal tissues, and gingival fibroblasts play an important role in maintaining and repairing the gingival tissues which are constantly exposed to external insults. In this study we examined the direct effects of LL-37 treatment on gingival fibroblasts and found that LL-37 significantly increased secretion of both interleukin 8 (IL-8) and IL-6 from these cells. LL-37 tended to decrease matrix metalloproteinase (MMP) activity in gingival fibroblasts, but this decrease did not reach statistical significance. LL-37 significantly increased tissue inhibitor of metalloproteinase-1 (TIMP-1) production by gingival fibroblasts, but had no significant effect on TIMP-2 levels. LL-37 was also shown to significantly increase production of basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and keratinocyte growth factor (KGF) in gingival fibroblasts. Taken together, these results suggest an important role for the host defence peptide, LL-37, in modulating the fibroblast response to remodeling in periodontal tissues

    The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli in vitro

    Get PDF
    Amongst the recognized classes of naturally occurring antimicrobials, human host defense peptides are an important group with an advantage (given their source) that they should be readily translatable to medicinal products. It is also plausible that truncated versions will display some of the biological activities of the parent peptide, with the benefit that they are less costly to synthesize using solid-phase chemistry. The host defense peptide, LL-37, and two truncated mimetics, KE-18 and KR-12, were tested for their inhibitory effects and antibiofilm properties against Candida albicans, Staphylococcus aureus, and Escherichia coli, microorganisms commonly implicated in biofilm-related infections such as ventilator-associated pneumonia (VAP). Using in silico prediction tools, the truncated peptides KE-18 and KR-12 were selected for minimum inhibitory concentration (MIC) and antibiofilm testing on the basis of their favorable cationicity, hydrophobic ratio, and amphipathicity compared with the parent peptide. Two methods were analyzed for determining peptide efficacy against biofilms; a crystal violet assay and an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. The biocidal activities (measured by MIC) and antibiofilm activities (measured by a crystal violet assay) appeared to be independent. LL-37 had no biocidal action against C. albicans (MIC > 250 μg/ml) but significant effects in both biofilm-prevention and biofilm-inhibition assays. KE-18 and KR-12 yielded superior MIC values against all three microorganisms. Only KE-18 had a significant effect in the biofilm-prevention assay, which persisted even at sub-MICs. Neither of the truncated peptides were active in the biofilm-inhibition assay. KE-18 was shown to bind lipopolysaccharide as effectively as LL-37 and to bind lipoteichoic acid more effectively. None of the peptides showed hemolytic activity against human erythrocytes at the concentrations tested. KE-18 should be considered for further development as a natural peptide-derived therapeutic for prevention of multi-species biofilm-related infections such as VAP

    Biodentine Reduces Tumor Necrosis Factor Alpha-induced TRPA1 Expression in Odontoblastlike Cells

    Get PDF
    International audienceIntroduction: The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression. Methods: Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies. Results: Immunofluorescent staining revealed. TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha induced TRPA1 responses after Biodentine treatment. Conclusions: In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses

    Evidence That a TRPA1-Mediated Murine Model of Temporomandibular Joint Pain Involves NLRP3 Inflammasome Activation

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-10-14, pub-electronic 2021-10-23Publication status: PublishedFunder: Versus Arthritis; Grant(s): 21541This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) in murine temporomandibular joint (TMJ) inflammatory hyperalgesia and the influence of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. Two distinct murine models of TMJ pain and inflammation (zymosan and CFA) were established. Spontaneous pain-like behaviours were observed as unilateral front paw cheek wipes. Ipsilateral cheek blood flow was used as a measure of ongoing inflammation, which, to our knowledge, is a novel approach to assessing real-time inflammation in the TMJ. Joint tissue and trigeminal ganglia were collected for ex vivo investigation. Both zymosan and CFA induced a time-dependent increase in hyperalgesia and inflammation biomarkers. Zymosan induced a significant effect after 4 h, correlating with a significantly increased IL-1β protein expression. CFA (50 µg) induced a more sustained response. The TRPA1 receptor antagonist A967079 significantly inhibited hyper-nociception. The NLRP3 inhibitor MCC950 similarly inhibited hyper-nociception, also attenuating inflammatory markers. In the trigeminal ganglia, CFA-induced CGRP expression showed trends of inhibition by A967079, whilst lba1 immunofluorescence was significantly inhibited by A967079 and MCC950, where the effect of TRPA1 inhibition lasted up to 14 days. Our results show that stimulation of TRPA1 is key to the TMJ pain. However, the inflammasome inhibitor exhibited similar properties in attenuating these pain-like behaviours, in addition to some inflammatory markers. This indicates that in addition to the therapeutic targeting of TRPA1, NLRP3 inhibition may provide a novel therapeutic strategy for TMJ inflammation and pain

    The rumen microbiome:An underexplored resource for novel antimicrobial discovery

    Get PDF
    Antimicrobial peptides (AMPs) are promising drug candidates to target multi-drug resistant bacteria. The rumen microbiome presents an underexplored resource for the discovery of novel microbial enzymes and metabolites, including AMPs. Using functional screening and computational approaches, we identified 181 potentially novel AMPs from a rumen bacterial metagenome. Here, we show that three of the selected AMPs (Lynronne-1, Lynronne-2 and Lynronne-3) were effective against numerous bacterial pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). No decrease in MRSA susceptibility was observed after 25 days of sub-lethal exposure to these AMPs. The AMPs bound preferentially to bacterial membrane lipids and induced membrane permeability leading to cytoplasmic leakage. Topical administration of Lynronne-1 (10% w/v) to a mouse model of MRSA wound infection elicited a significant reduction in bacterial counts, which was comparable to treatment with 2% mupirocin ointment. Our findings indicate that the rumen microbiome may provide viable alternative antimicrobials for future therapeutic applicationpublishersversionPeer reviewe

    Potential Therapeutic Strategy of Targeting Pulp Fibroblasts in Dentin-Pulp Regeneration

    Get PDF
    International audienceFibroblasts represent the most abundant population within the dental pulp. Although other cell types such as odontoblasts and stem cells have been extensively investigated, very little attention was given to the fibroblasts, which have major roles in regulating the pulp biology and function under normal and pathologic conditions. Indeed, although pulp fibroblasts control the pulp vascularization and innervation under physiological conditions, these cells synthesize growth factors that enhance dentin-pulp regeneration, vascularization, and innervation. Pulp fibroblasts also represent a unique cell population because they are the only non-hepatic and non-immune cell type capable of synthesizing all complement proteins leading to production of biologically active fragments such as C3a, C5a, and membrane attack complex, which play major roles in the pulp regeneration processes. C3a fragment is involved in inducing the proliferation of both stem cells and pulp fibroblasts. It is also involved in stem cell mobilization and pulp fibroblast recruitment. C5a guides nerve sprouting and stem cell recruitment. The membrane attack complex fixes on cariogenic bacteria walls, leading to their direct destruction. These data demonstrate the central role played by pulp fibroblasts in regulating the dentin-pulp tissue by directly destroying cariogenic bacteria and by releasing bioactive fragments involved in nerve sprouting and stem cell recruitment and pulp regeneration. Taken together, this shows that targeting pulp fibroblasts represents a realistic strategy to induce complete dentin-pulp regeneration

    Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential

    Get PDF
    As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities
    corecore