1,931 research outputs found

    Photonic quantum error correction of linear optics using W-state encoding

    Full text link
    Error-detection and correction are necessary prerequisites for any scalable quantum computing architecture. Given the inevitability of unwanted physical noise in quantum systems and the propensity for errors to spread as computations proceed, computational outcomes can become substantially corrupted. This observation applies regardless of the choice of physical implementation. In the context of photonic quantum information processing, there has recently been much interest in passive linear optics quantum computing, which includes boson-sampling, as this model eliminates the highly-challenging requirements for feed-forward via fast, active control. That is, these systems are passive by definition. In usual scenarios, error detection and correction techniques are inherently active, making them incompatible with this model, arousing suspicion that physical error processes may be an insurmountable obstacle. Here we explore a photonic error-detection technique, based on W-state encoding of photonic qubits, which is entirely passive, based on post-selection, and compatible with these near-term photonic architectures of interest. We show that this W-state redundant encoding techniques enables the suppression of dephasing noise on photonic qubits via simple fan-out style operations, implemented by optical Fourier transform networks, which can be readily realised today. The protocol effectively maps dephasing noise into heralding failures, with zero failure probability in the ideal no-noise limit

    Concepts of Animal Health and Welfare in Organic Livestock Systems

    Get PDF
    In 2005, The International Federation of Organic Agricultural Movements (IFOAM) developed four new ethical principles of organic agriculture to guide its future development: the principles of health, ecology, care, and fairness. The key distinctive concept of animal welfare in organic agriculture combines naturalness and human care, and can be linked meaningfully with these principles. In practice, a number of challenges are connected with making organic livestock systems work. These challenges are particularly dominant in immature agro-ecological systems, for example those that are characterized by industrialization and monoculture. Some of the current challenges are partly created by shortages of land and manure, which encourage zero-grazing and other confined systems. Other challenges are created in part by the conditions for farming and the way in which global food distribution systems are organized, e.g., how live animals are transported, how feed is traded and transported all over the globe, and the development of infrastructure and large herds. We find that the overall organic principles should be included when formulating guidelines for practical organic animal farming. This article explores how the special organic conceptions of animal welfare are related to the overall principles of organic agriculture. The aim is to identify potential routes for future development of organic livestock systems in different contexts and with reference to the specific understanding of animal welfare in organic agriculture. We include two contrasting cases represented by organic livestock systems in northwestern Europe and farming systems in tropical low-income countries; we use these cases to explore the widely different challenges of organic livestock systems in different parts of the world

    Prevalence of Disorders Recorded in Dogs Attending Primary-Care Veterinary Practices in England

    Get PDF
    Purebred dog health is thought to be compromised by an increasing occurence of inherited diseases but inadequate prevalence data on common disorders have hampered efforts to prioritise health reforms. Analysis of primary veterinary practice clinical data has been proposed for reliable estimation of disorder prevalence in dogs. Electronic patient record (EPR) data were collected on 148,741 dogs attending 93 clinics across central and south-eastern England. Analysis in detail of a random sample of EPRs relating to 3,884 dogs from 89 clinics identified the most frequently recorded disorders as otitis externa (prevalence 10.2%, 95% CI: 9.1-11.3), periodontal disease (9.3%, 95% CI: 8.3-10.3) and anal sac impaction (7.1%, 95% CI: 6.1-8.1). Using syndromic classification, the most prevalent body location affected was the head-and-neck (32.8%, 95% CI: 30.7-34.9), the most prevalent organ system affected was the integument (36.3%, 95% CI: 33.9-38.6) and the most prevalent pathophysiologic process diagnosed was inflammation (32.1%, 95% CI: 29.8-34.3). Among the twenty most-frequently recorded disorders, purebred dogs had a significantly higher prevalence compared with crossbreds for three: otitis externa (P = 0.001), obesity (P = 0.006) and skin mass lesion (P = 0.033), and popular breeds differed significantly from each other in their prevalence for five: periodontal disease (P = 0.002), overgrown nails (P = 0.004), degenerative joint disease (P = 0.005), obesity (P = 0.001) and lipoma (P = 0.003). These results fill a crucial data gap in disorder prevalence information and assist with disorder prioritisation. The results suggest that, for maximal impact, breeding reforms should target commonly-diagnosed complex disorders that are amenable to genetic improvement and should place special focus on at-risk breeds. Future studies evaluating disorder severity and duration will augment the usefulness of the disorder prevalence information reported herein

    Light Perception in Two Strictly Subterranean Rodents: Life in the Dark or Blue?

    Get PDF
    BACKGROUND: The African mole-rats (Bathyergidae, Rodentia) are strictly subterranean, congenitally microphthalmic rodents that are hardly ever exposed to environmental light. Because of the lack of an overt behavioural reaction to light, they have long been considered to be blind. However, recent anatomical studies have suggested retention of basic visual capabilities. In this study, we employed behavioural tests to find out if two mole-rat species are able to discriminate between light and dark, if they are able to discriminate colours and, finally, if the presence of light in burrows provokes plugging behaviour, which is assumed to have a primarily anti-predatory function. METHODOLOGY/PRINCIPAL FINDING: We used a binary choice test to show that the silvery mole-rat Heliophobius argenteocinereus and the giant mole-rat Fukomys mechowii exhibit a clear photoavoidance response to full-spectrum ("white"), blue and green-yellow light, but no significant reaction to ultraviolet or red light during nest building. The mole-rats thus retain dark/light discrimination capabilities and a capacity to perceive short to medium-wavelength light in the photopic range of intensities. These findings further suggest that the mole-rat S opsin has its absorption maximum in the violet/blue part of the spectrum. The assay did not yield conclusive evidence regarding colour discrimination. To test the putative role of vision in bathyergid anti-predatory behaviour, we examined the reaction of mole-rats to the incidence of light in an artificial burrow system. The presence of light in the burrow effectively induced plugging of the illuminated tunnel. CONCLUSION/SIGNIFICANCE: Our findings suggest that the photopic vision is conserved and that low acuity residual vision plays an important role in predator avoidance and tunnel maintenance in the African mole-rats

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    An evaluation of POSSUM and P-POSSUM scoring in predicting post-operative mortality in a level 1 critical care setting

    Get PDF
    Background POSSUM and P-POSSUM are used in the assessment of outcomes in surgical patients. Neither scoring systems’ accuracy has been established where a level 1 critical care facility (level 1 care ward) is available for perioperative care. We compared POSSUM and P-POSSUM predicted with observed mortality on a level 1 care ward. Methods A prospective, observational study was performed between May 2000 and June 2008. POSSUM and P-POSSUM scores were calculated for all postoperative patients who were admitted to the level 1 care ward. Data for post-operative mortality were obtained from hospital records for 2552 episodes of patient care. Observed vs expected mortality was compared using receiver operating characteristic (ROC) curves and the goodness of fit assessed using the Hosmer-Lemeshow equation. Results ROC curves show good discriminative ability between survivors and non-survivors for POSSUM and P-POSSUM. Physiological score had far higher discrimination than operative score. Both models showed poor calibration and poor goodness of fit (Hosmer-Lemeshow). Observed to expected (O:E) mortality ratio for POSSUM and P-POSSUM indicated significantly fewer than expected deaths in all deciles of risk. Conclusions Our data suggest a 30-60% reduction in O:E mortality. We suggest that the use of POSSUM models to predict mortality in patients admitted to level 1 care ward is inappropriate or that a recalibration of POSSUM is required to make it useful in a level 1 care ward setting

    Evidence for an excess of B -> D(*) Tau Nu decays

    Get PDF
    Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the format of Figure 2 and included the effect of the change of the Tau polarization due to the charged Higg

    Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓

    Get PDF
    We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468  fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)
    • …
    corecore