118 research outputs found

    High Turnover Among State Health Officials/Public Health Directors: Implications for the Public's Health

    Get PDF
    State health officials (SHOs) serve a critical role as the leaders of state public health systems. Despite their many responsibilities, there is no formal process for preparation to become an SHO, and few requirements influence the selection of an SHO. Furthermore, to date, no studies have examined SHO tenure or their experiences

    Dysregulation of the Intrarenal Vitamin D Endocytic Pathway in a Nephropathy-Prone Mouse Model of Type 1 Diabetes

    Get PDF
    Microalbuminuria in humans with Type 1 diabetes (T1D) is associated with increased urinary excretion of megalin, as well as many megalin ligands, including vitamin-D-binding protein (VDBP). We examined the DBA/2J diabetic mouse, nephropathy prone model, to determine if megalin and VDBP excretion coincide with the development of diabetic nephropathy. Megalin, VDBP, and 25-hydroxy-vitamin D (25-OHD) were measured in urine, and genes involved in vitamin D metabolism were assessed in renal tissues from diabetic and control mice at 10, 15, and 18 weeks following the onset of diabetes. Megalin, VDBP, and 25-OHD were increased in the urine of diabetic mice. 1-α hydroxylase (CYP27B1) mRNA in the kidney was persistently increased in diabetic mice, as were several vitamin D-target genes. These studies show that intrarenal vitamin D handling is altered in the diabetic kidney, and they suggest that in T1D, urinary losses of VDBP may portend risk for intrarenal and extrarenal vitamin D deficiencies

    The Impact of SGLT2 Inhibitors, Compared with Insulin, on Diabetic Bone Disease in a Mouse Model of Type 1 Diabetes

    Get PDF
    Skeletal co-morbidities in type 1 diabetes include an increased risk for fracture and delayed fracture healing, which are intertwined with disease duration and the presence of other diabetic complications. As such, chronic hyperglycemia is undoubtedly a major contributor to these outcomes, despite standard insulin-replacement therapy. Therefore, using the streptozotocin (STZ)-induced model of hypoinsulinemic hyperglycemia in DBA/2J male mice, we compared the effects of two glucose lowering therapies on the fracture resistance of bone and markers of bone turnover. Twelve week-old diabetic (DM) mice were treated for 9 weeks with: 1) oral canagliflozin (CANA, dose range ~10-16 mg/kg/day), an inhibitor of the renal sodium-dependent glucose co-transporter type 2 (SGLT2); 2) subcutaneous insulin, via minipump (INS, 0.125 units/day); 3) co-therapy (CANA + INS); or 4) no treatment (STZ, without therapy). These groups were also compared to non-diabetic control groups. Untreated diabetic mice experienced increased bone resorption and significant deficits in cortical and trabecular bone that contributed to structural weakness of the femur mid-shaft and the lumbar vertebra, as determined by three-point bending and compression tests, respectively. Treatment with either canagliflozin or insulin alone only partially rectified hyperglycemia and the diabetic bone phenotype. However, when used in combination, normalization of glycemic control was achieved, and a prevention of the DM-related deterioration in bone microarchitecture and bone strength occurred, due to additive effects of canagliflozin and insulin. Nevertheless, CANA-treated mice, whether diabetic or non-diabetic, demonstrated an increase in urinary calcium loss; FGF23 was also increased in CANA-treated DM mice. These findings could herald ongoing bone mineral losses following CANA exposure, suggesting that certain CANA-induced skeletal consequences might detract from therapeutic improvements in glycemic control, as they relate to diabetic bone disease

    SGLT2 Inhibitor Therapy Improves Blood Glucose but Does Not Prevent Diabetic Bone Disease in Diabetic DBA/2J Male Mice

    Get PDF
    Persons with type 1 and type 2 diabetes have increased fracture risk, attributed to deficits in the microarchitecture and strength of diabetic bone, thought to be mediated, in part, by the consequences of chronic hyperglycemia. Therefore, to examine the effects of a glucose-lowering SGLT2 inhibitor on blood glucose (BG) and bone homeostasis in a model of diabetic bone disease, male DBA/2J mice with or without streptozotocin (STZ)-induced hyperglycemia were fed chow containing the SGLT2 inhibitor, canagliflozin (CANA), or chow without drug, for 10 weeks of therapy. Thereafter, serum bone biomarkers were measured, fracture resistance of cortical bone was assessed by μCT analysis and a three-point bending test of the femur, and vertebral bone strength was determined by compression testing. In the femur metaphysis and L6 vertebra, long-term diabetes (DM) induced deficits in trabecular bone microarchitecture. In the femur diaphysis, a decrease in cortical bone area, cortical thickness and minimal moment of inertia occurred in DM (p \u3c 0.0001, for all) while cortical porosity was increased (p \u3c 0.0001). These DM changes were associated with reduced fracture resistance (decreased material strength and toughness; decreased structural strength and rigidity; p \u3c 0.001 for all). Significant increases in PTH (p \u3c 0.0001), RatLAPs (p = 0.0002), and urine calcium concentration (p \u3c 0.0001) were also seen in DM. Canagliflozin treatment improved BG in DM mice by ~35%, but did not improve microarchitectural parameters. Instead, in canagliflozin-treated diabetic mice, a further increase in RatLAPs was evident, possibly suggesting a drug-related intensification of bone resorption. Additionally, detrimental metaphyseal changes were noted in canagliflozin-treated control mice. Hence, diabetic bone disease was not favorably affected by canagliflozin treatment, perhaps due to insufficient glycemic improvement. Instead, in control mice, long-term exposure to SGLT2 inhibition was associated with adverse effects on the trabecular compartment of bone

    Adaptations of Avian Flu Virus Are a Cause for Concern

    Get PDF
    We are in the midst of a revolutionary period in the life sciences. Technological capabilities have dramatically expanded, we have a much improved understanding of the complex biology of selected microorganisms, and we have a much improved ability to manipulate microbial genomes. With this has come unprecedented potential for better control of infectious diseases and significant societal benefit. However, there is also a growing risk that the same science will be deliberately misused and that the consequences could be catastrophic. Efforts to describe or define life-sciences research of particular concern have focused on the possibility that knowledge or products derived from such research, or new technologies, could be directly misapplied with a sufficiently broad scope to affect national or global security. Research that might greatly enhance the harm caused by microbial pathogens has been of special concern (1–3). Until now, these efforts have suffered from a lack of specificity and a paucity of concrete examples of “dual use research of concern” (3). Dual use is defined as research that could be used for good or bad purposes. We are now confronted by a potent, real-world example

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Global Oceans

    Get PDF
    Global Oceans is one chapter from the State of the Climate in 2019 annual report and is avail-able from https://doi.org/10.1175/BAMS-D-20-0105.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contr1ibutions from scien-tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru-ments located on land, water, ice, and in space. The full report is available from https://doi.org /10.1175/2020BAMSStateoftheClimate.1

    Ownership identity, strategy and performance:business group affiliates versus independent firms in India

    Get PDF
    We consider whether the impact of entrepreneurial orientation on business performance is moderated by the company affiliation with business groups. Within business groups, we explore the trade-off between inter-firm insurance that enables risk-taking, and inefficient resource allocation. Risk-taking in group affiliated firms leads to higher performance, compared to independent firms, but the impact of proactivity is attenuated. Utilizing Indian data, we show that risk-taking may undermine rather than improve business performance, but this effect is not present in business groups. Proactivity enhances performance, but less so in business groups. Firms can also enhance performance by technological knowledge acquisition, but these effects are not significantly different for various ownership categories
    corecore