212 research outputs found

    Preliminary estimates of radiosonde thermistor errors

    Get PDF
    Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument

    Digitalization and the Anthropocene

    Get PDF
    Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically increased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: (a) planetary boundaries and stability, (b) equity within and between countries, and (c) human agency and governance, mediated via (i) increasing resource efficiency, (ii) accelerating consumption and scale effects, (iii) expanding political and economic control, and (iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human–digital–Earth interactions toward sustainability

    A new high-speed IR camera system

    Get PDF
    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging

    A Phylogenomic Study of the Genus Alphavirus Employing Whole Genome Comparison

    Get PDF
    The phylogenetics of the genus Alphavirus have historically been characterized using partial gene, single gene or partial proteomic data. We have mined cDNA and amino acid sequences from GenBank for all fully sequenced and some partially sequenced alphaviruses and generated phylogenomic analyses of the genus Alphavirus genus, employing capsid encoding structural regions, non-structural coding regions and complete viral genomes. Our studies support the presence of the previously reported recombination event that produced the Western Equine Encephalitis clade, and confirm many of the patterns of geographic radiation and divergence of the multiple species. Our data suggest that the Salmon Pancreatic Disease Virus and Sleeping Disease Virus are sufficiently divergent to form a separate clade from the other alphaviruses. Also, unlike previously reported studies employing limited sequence data for correlation of phylogeny, our results indicate that the Barmah Forest Virus and Middelburg Virus appear to be members of the Semliki Forest clade. Additionally, our analysis indicates that the Southern Elephant Seal Virus is part of the Semliki Forest clade, although still phylogenetically distant from all known members of the genus Alphavirus. Finally, we demonstrate that the whole Rubella viral genome provides an ideal outgroup for phylogenomic studies of the genus Alphavirus

    MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease

    Get PDF
    MicroRNAs (miRNAs) have important roles in regulating a plethora of physiological and pathophysiogical processes including neurodegeneration. In both human immunodeficiency virus (HIV)-associated dementia in humans and its monkey model simian immunodeficiency virus encephalitis (SIVE), we find miR-21, a miRNA largely known for its link to oncogenesis, to be significantly upregulated in the brain. In situ hybridization of the diseased brain sections revealed induction of miR-21 in neurons. miR-21 can be induced in neurons by prolonged N-methyl--aspartic acid receptor stimulation, an excitotoxic process active in HIV and other neurodegenerative diseases. Introduction of miR-21 into human neurons leads to pathological functional defects. Furthermore, we show that miR-21 specifically targets the mRNA of myocyte enhancer factor 2C (MEF2C), a transcription factor crucial for neuronal function, and reduces its expression. MEF2C is dramatically downregulated in neurons of HIV-associated dementia patients, as well as monkeys with SIVE. Together, this study elucidates a novel role for miR-21 in the brain, not only as a potential signature of neurological disease, but also as a crucial effector of HIV-induced neuronal dysfunction and neurodegeneration

    Disruption, not displacement: Environmental variability and temporary migration in Bangladesh

    Get PDF
    Mass migration is one of the most concerning potential outcomes of global climate change. Recent research into environmentally induced migration suggests that relationship is much more complicated than originally posited by the ‘environmental refugee’ hypothesis. Climate change is likely to increase migration in some cases and reduce it in others, and these movements will more often be temporary and short term than permanent and long term. However, few large-sample studies have examined the evolution of temporary migration under changing environmental conditions. To address this gap, we measure the extent to which temperature, precipitation, and flooding can predict temporary migration in Matlab, Bangladesh. Our analysis incorporates high-frequency demographic surveillance data, a discrete time event history approach, and a range of sociodemographic and contextual controls. This approach reveals that migration declines immediately after flooding but quickly returns to normal. In contrast, optimal precipitation and high temperatures have sustained positive effects on temporary migration that persist over one to two year periods. Building on previous studies of long-term migration, these results challenge the common assumption that flooding, precipitation extremes and high temperatures will consistently increase temporary migration. Instead, our results are consistent with a livelihoods interpretation of environmental migration in which households draw on a range of strategies to cope with environmental variability

    Blood Signature of Pre-Heart Failure: A Microarrays Study

    Get PDF
    International audienceBACKGROUND: The preclinical stage of systolic heart failure (HF), known as asymptomatic left ventricular dysfunction (ALVD), is diagnosed only by echocardiography, frequent in the general population and leads to a high risk of developing severe HF. Large scale screening for ALVD is a difficult task and represents a major unmet clinical challenge that requires the determination of ALVD biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: 294 individuals were screened by echocardiography. We identified 9 ALVD cases out of 128 subjects with cardiovascular risk factors. White blood cell gene expression profiling was performed using pangenomic microarrays. Data were analyzed using principal component analysis (PCA) and Significant Analysis of Microarrays (SAM). To build an ALVD classifier model, we used the nearest centroid classification method (NCCM) with the ClaNC software package. Classification performance was determined using the leave-one-out cross-validation method. Blood transcriptome analysis provided a specific molecular signature for ALVD which defined a model based on 7 genes capable of discriminating ALVD cases. Analysis of an ALVD patients validation group demonstrated that these genes are accurate diagnostic predictors for ALVD with 87% accuracy and 100% precision. Furthermore, Receiver Operating Characteristic curves of expression levels confirmed that 6 out of 7 genes discriminate for left ventricular dysfunction classification. CONCLUSIONS/SIGNIFICANCE: These targets could serve to enhance the ability to efficiently detect ALVD by general care practitioners to facilitate preemptive initiation of medical treatment preventing the development of HF
    corecore