1,957 research outputs found
Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.
Most monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans1-3. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity4,5. ADCY3 localizes to the primary cilia of neurons 6 , organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases in which obesity is a cardinal manifestation 7 . We demonstrate that MC4R colocalizes with ADCY3 at the primary cilia of a subset of hypothalamic neurons, that obesity-associated MC4R mutations impair ciliary localization and that inhibition of adenylyl cyclase signaling at the primary cilia of these neurons increases body weight. These data suggest that impaired signaling from the primary cilia of MC4R neurons is a common pathway underlying genetic causes of obesity in humans
Simulating the High Energy Gamma-ray sky seen by the GLAST Large Area Telescope
This paper presents the simulation of the GLAST high energy gamma-ray
telescope. The simulation package, written in C++, is based on the Geant4
toolkit, and it is integrated into a general framework used to process events.
A detailed simulation of the electronic signals inside Silicon detectors has
been provided and it is used for the particle tracking, which is handled by a
dedicated software. A unique repository for the geometrical description of the
detector has been realized using the XML language and a C++ library to access
this information has been designed and implemented. A new event display based
on the HepRep protocol was implemented. The full simulation was used to
simulate a full week of GLAST high energy gamma-ray observations. This paper
outlines the contribution developed by the Italian GLAST software group.Comment: 6 pages, 4 figures, to be published in the Proceedings of the 6th
International Symposium ''Frontiers of Fundamental and Computational
Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
Measurement of the branching ratio of the decay
From the 2002 data taking with a neutral kaon beam extracted from the
CERN-SPS, the NA48/1 experiment observed 97 candidates with a background contamination of events.
From this sample, the BR() is measured to be
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are
hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV
gamma rays and TeV neutrinos on a time scale of several months. We perform the
first systematic search for gamma-ray emission in Fermi LAT data in the energy
range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding
in dense CSM. We search for a gamma-ray excess at each SNe location in a one
year time window. In order to enhance a possible weak signal, we simultaneously
study the closest and optically brightest sources of our sample in a
joint-likelihood analysis in three different time windows (1 year, 6 months and
3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf),
we repeat the analysis with an extended time window lasting 4.5 years. We do
not find a significant excess in gamma rays for any individual source nor for
the combined sources and provide model-independent flux upper limits for both
cases. In addition, we derive limits on the gamma-ray luminosity and the ratio
of gamma-ray-to-optical luminosity ratio as a function of the index of the
proton injection spectrum assuming a generic gamma-ray production model.
Furthermore, we present detailed flux predictions based on multi-wavelength
observations and the corresponding flux upper limit at 95% confidence level
(CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak
([email protected]), updated author list and acknowledgement
GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies
The detection of diffuse radio emission associated with clusters of galaxies
indicates populations of relativistic leptons infusing the intracluster medium.
Those electrons and positrons are either injected into and accelerated directly
in the intracluster medium, or produced as secondary pairs by cosmic-ray ions
scattering on ambient protons. Radiation mechanisms involving the energetic
leptons together with decay of neutral pions produced by hadronic interactions
have the potential to produce abundant GeV photons. Here, we report on the
search for GeV emission from clusters of galaxies using data collected by the
Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi) from
August 2008 to February 2010. Thirty-three galaxy clusters have been selected
according to their proximity and high mass, X-ray flux and temperature, and
indications of non-thermal activity for this study. We report upper limits on
the photon flux in the range 0.2-100 GeV towards a sample of observed clusters
(typical values 1-5 x 10^-9 ph cm^-2 s^-1) considering both point-like and
spatially resolved models for the high-energy emission, and discuss how these
results constrain the characteristics of energetic leptons and hadrons, and
magnetic fields in the intracluster medium. The volume-averaged
relativistic-hadron-to-thermal energy density ratio is found to be < 5-10% in
several clusters.Comment: 9 pages, 3 tables, 1 figure, accepted for publication in ApJ Letter
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni
Novae are thermonuclear explosions on a white dwarf surface fueled by mass
accreted from a companion star. Current physical models posit that shocked
expanding gas from the nova shell can produce X-ray emission but emission at
higher energies has not been widely expected. Here, we report the Fermi Large
Area Telescope detection of variable gamma-ray (0.1-10 GeV) emission from the
recently-detected optical nova of the symbiotic star V407 Cygni. We propose
that the material of the nova shell interacts with the dense ambient medium of
the red giant primary, and that particles can be accelerated effectively to
produce pi0 decay gamma-rays from proton-proton interactions. Emission
involving inverse Compton scattering of the red giant radiation is also
considered and is not ruled out.Comment: 38 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, A.B. Hill, P. Jean, S. Razzaque, K.S. Woo
Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models
We report on the observations of 14 dwarf spheroidal galaxies with the Fermi
Gamma-Ray Space Telescope taken during the first 11 months of survey mode
operations. The Fermi telescope provides a new opportunity to test particle
dark matter models through the expected gamma-ray emission produced by pair
annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf
spheroidal galaxies, the largest galactic substructures predicted by the cold
dark matter scenario, are attractive targets for such indirect searches for
dark matter because they are nearby and among the most extreme dark matter
dominated environments. No significant gamma-ray emission was detected above
100 MeV from the candidate dwarf galaxies. We determine upper limits to the
gamma-ray flux assuming both power-law spectra and representative spectra from
WIMP annihilation. The resulting integral flux above 100 MeV is constrained to
be at a level below around 10^-9 photons cm^-2 s^-1. Using recent stellar
kinematic data, the gamma-ray flux limits are combined with improved
determinations of the dark matter density profile in 8 of the 14 candidate
dwarfs to place limits on the pair annihilation cross-section of WIMPs in
several widely studied extensions of the standard model. With the present data,
we are able to rule out large parts of the parameter space where the thermal
relic density is below the observed cosmological dark matter density and WIMPs
(neutralinos here) are dominantly produced non-thermally, e.g. in models where
supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits
presented here also constrain some WIMP models proposed to explain the Fermi
and PAMELA e^+e^- data, including low-mass wino-like neutralinos and models
with TeV masses pair-annihilating into muon-antimuon pairs. (Abridged)Comment: 25 pages, 4 figures, accepted to ApJ, Corresponding authors: J.
Cohen-Tanugi, C. Farnier, T.E. Jeltema, E. Nuss, and S. Profum
Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT
The flux of gamma rays with energies >100MeV is dominated by diffuse emission
from CRs illuminating the ISM of our Galaxy through the processes of
Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The
study of this diffuse emission provides insight into the origin and transport
of CRs. We searched for gamma-ray emission from the SMC in order to derive
constraints on the CR population and transport in an external system with
properties different from the Milky Way. We analysed the first 17 months of
continuous all-sky observations by the Large Area Telescope of the Fermi
mission to determine the spatial distribution, flux and spectrum of the
gamma-ray emission from the SMC. We also used past radio synchrotron
observations of the SMC to study the population of CR electrons specifically.
We obtained the first detection of the SMC in high-energy gamma rays, with an
integrated >100MeV flux of (3.7 +/-0.7) x10e-8 ph/cm2/s, with additional
systematic uncertainty of <16%. The emission is steady and from an extended
source ~3{\deg} in size. It is not clearly correlated with the distribution of
massive stars or neutral gas, nor with known pulsars or SNRs, but a certain
correlation with supergiant shells is observed. The observed flux implies an
upper limit on the average CR nuclei density in the SMC of ~15% of the value
measured locally in the Milky Way. The population of high-energy pulsars of the
SMC may account for a substantial fraction of the gamma-ray flux, which would
make the inferred CR nuclei density even lower. The average density of CR
electrons derived from radio synchrotron observations is consistent with the
same reduction factor but the uncertainties are large. From our current
knowledge of the SMC, such a low CR density does not seem to be due to a lower
rate of CR injection and rather indicates a smaller CR confinement volume
characteristic size.Comment: 14 pages, 6 figures, accepted for publication in A&
- …
