259 research outputs found

    Arterial elasticity imaging: comparison of finite-element analysis models with high-resolution ultrasound speckle tracking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nonlinear mechanical properties of internal organs and tissues may be measured with unparalleled precision using ultrasound imaging with phase-sensitive speckle tracking. The many potential applications of this important noninvasive diagnostic approach include measurement of arterial stiffness, which is associated with numerous major disease processes. The accuracy of previous ultrasound measurements of arterial stiffness and vascular elasticity has been limited by the relatively low strain of nonlinear structures under normal physiologic pressure and the measurement assumption that the effect of the surrounding tissue modulus might be ignored in both physiologic and pressure equalized conditions.</p> <p>Methods</p> <p>This study performed high-resolution ultrasound imaging of the brachial artery in a healthy adult subject under normal physiologic pressure and the use of external pressure (pressure equalization) to increase strain. These ultrasound results were compared to measurements of arterial strain as determined by finite-element analysis models with and without a surrounding tissue, which was represented by homogenous material with fixed elastic modulus.</p> <p>Results</p> <p>Use of the pressure equalization technique during imaging resulted in average strain values of 26% and 18% at the top and sides, respectively, compared to 5% and 2%, at the top and sides, respectively, under physiologic pressure. In the artery model that included surrounding tissue, strain was 19% and 16% under pressure equalization versus 9% and 13% at the top and sides, respectively, under physiologic pressure. The model without surrounding tissue had slightly higher levels of strain under physiologic pressure compared to the other model, but the resulting strain values under pressure equalization were > 60% and did not correspond to experimental values.</p> <p>Conclusions</p> <p>Since pressure equalization may increase the dynamic range of strain imaging, the effect of the surrounding tissue on strain should be incorporated into models of arterial strain, particularly when the pressure equalization technique is used.</p

    BRCA1/2 mutation screening in high-risk breast/ovarian cancer families and sporadic cancer patient surveilling for hidden high-risk families

    Get PDF
    Background: The estimated ratio of hereditary breast/ovarian cancer (HBOC) based on family history is 1.5% in Latvia. This is significantly lower than the European average of 5-10%. Molecular markers like mutations and SNPs can help distinguish HBOC patients in the sporadic breast and ovarian cancer group.Methods: 50 patients diagnosed with HBOC in the Latvian Cancer Registry from January 2005 to December 2008 were screened for BRCA1 founder mutation-negatives and subjected to targeted resequencing of BRCA1 and BRCA2 genes. The newly found mutations were screened for in the breast and ovarian cancer group of 1075 patients by Real Time-PCR/HRM analysis and RFLP.Results: Four BRCA2 mutations including three novel BRCA2 frameshift mutations and one previously known BRCA2 frameshift mutation and one BRCA1 splicing mutation were identified. Two of the BRCA2 mutations were found in a group of consecutive breast cancer patients with a frequency of 0.51% and 0.38%.Conclusions: Molecular screening of sequential cancer patients is an important tool to identify HBOC families.publishersversionPeer reviewe

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    (Q)SAR Modelling of Nanomaterial Toxicity - A Critical Review

    Get PDF
    There is an increasing recognition that nanomaterials pose a risk to human health, and that the novel engineered nanomaterials (ENMs) in the nanotechnology industry and their increasing industrial usage poses the most immediate problem for hazard assessment, as many of them remain untested. The large number of materials and their variants (different sizes and coatings for instance) that require testing and ethical pressure towards non-animal testing means that expensive animal bioassay is precluded, and the use of (quantitative) structure activity relationships ((Q)SAR) models as an alternative source of hazard information should be explored. (Q)SAR modelling can be applied to fill the critical knowledge gaps by making the best use of existing data, prioritize physicochemical parameters driving toxicity, and provide practical solutions to the risk assessment problems caused by the diversity of ENMs. This paper covers the core components required for successful application of (Q)SAR technologies to ENMs toxicity prediction, and summarizes the published nano-(Q)SAR studies and outlines the challenges ahead for nano-(Q)SAR modelling. It provides a critical review of (1) the present status of the availability of ENMs characterization/toxicity data, (2) the characterization of nanostructures that meets the need of (Q)SAR analysis, (3) the summary of published nano-(Q)SAR studies and their limitations, (4) the in silico tools for (Q)SAR screening of nanotoxicity and (5) the prospective directions for the development of nano-(Q)SAR models

    Population-based targeted sequencing of 54 candidate genes identifies PALB2 as a susceptibility gene for high-grade serous ovarian cancer

    Get PDF
    PURPOSE: The known epithelial ovarian cancer (EOC) susceptibility genes account for less than 50% of the heritable risk of ovarian cancer suggesting that other susceptibility genes exist. The aim of this study was to evaluate the contribution to ovarian cancer susceptibility of rare deleterious germline variants in a set of candidate genes. METHODS: We sequenced the coding region of 54 candidate genes in 6385 invasive EOC cases and 6115 controls of broad European ancestry. Genes with an increased frequency of putative deleterious variants in cases versus controls were further examined in an independent set of 14 135 EOC cases and 28 655 controls from the Ovarian Cancer Association Consortium and the UK Biobank. For each gene, we estimated the EOC risks and evaluated associations between germline variant status and clinical characteristics. RESULTS: The ORs associated for high-grade serous ovarian cancer were 3.01 for PALB2 (95% CI 1.59 to 5.68; p=0.00068), 1.99 for POLK (95% CI 1.15 to 3.43; p=0.014) and 4.07 for SLX4 (95% CI 1.34 to 12.4; p=0.013). Deleterious mutations in FBXO10 were associated with a reduced risk of disease (OR 0.27, 95% CI 0.07 to 1.00, p=0.049). However, based on the Bayes false discovery probability, only the association for PALB2 in high-grade serous ovarian cancer is likely to represent a true positive. CONCLUSIONS: We have found strong evidence that carriers of PALB2 deleterious mutations are at increased risk of high-grade serous ovarian cancer. Whether the magnitude of risk is sufficiently high to warrant the inclusion of PALB2 in cancer gene panels for ovarian cancer risk testing is unclear; much larger sample sizes will be needed to provide sufficiently precise estimates for clinical counselling

    Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer

    Get PDF
    BACKGROUND: While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). METHODS: The primary patient set (Set 1) included 14 independent EOC studies (4,293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1,744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). RESULTS: No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta = 1.1E-6, HRSet1 = 1.17, HRSet2 = 1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta = 1.1E-6; Pcorrected = 0.01). CONCLUSIONS: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. IMPACT: This study represents the first exome-wide association study of EOC survival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study

    The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts

    Get PDF
    The clinical effects of hypokalemia including action potential prolongation and arrhythmogenicity suppressible by lidocaine were reproduced in hypokalemic (3.0 mM K(+)) Langendorff-perfused murine hearts before and after exposure to lidocaine (10 μM). Novel limiting criteria for local and transmural, epicardial, and endocardial re-excitation involving action potential duration (at 90% repolarization, APD(90)), ventricular effective refractory period (VERP), and transmural conduction time (Δlatency), where appropriate, were applied to normokalemic (5.2 mM K(+)) and hypokalemic hearts. Hypokalemia increased epicardial APD(90) from 46.6 ± 1.2 to 53.1 ± 0.7 ms yet decreased epicardial VERP from 41 ± 4 to 29 ± 1 ms, left endocardial APD(90) unchanged (58.2 ± 3.7 to 56.9 ± 4.0 ms) yet decreased endocardial VERP from 48 ± 4 to 29 ± 2 ms, and left Δlatency unchanged (1.6 ± 1.4 to 1.1 ± 1.1 ms; eight normokalemic and five hypokalemic hearts). These findings precisely matched computational predictions based on previous reports of altered ion channel gating and membrane hyperpolarization. Hypokalemia thus shifted all re-excitation criteria in the positive direction. In contrast, hypokalemia spared epicardial APD(90) (54.8 ± 2.7 to 60.6 ± 2.7 ms), epicardial VERP (84 ± 5 to 81 ± 7 ms), endocardial APD(90) (56.6 ± 4.2 to 63.7 ± 6.4 ms), endocardial VERP (80 ± 2 to 84 ± 4 ms), and Δlatency (12.5 ± 6.2 to 7.6 ± 3.4 ms; five hearts in each case) in lidocaine-treated hearts. Exposure to lidocaine thus consistently shifted all re-excitation criteria in the negative direction, again precisely agreeing with the arrhythmogenic findings. In contrast, established analyses invoking transmural dispersion of repolarization failed to account for any of these findings. We thus establish novel, more general, criteria predictive of arrhythmogenicity that may be particularly useful where APD(90) might diverge sharply from VERP

    A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge

    Countries with Higher Levels of Gender Equality Show Larger National Sex Differences in Mathematics Anxiety and Relatively Lower Parental Mathematics Valuation for Girls.

    Get PDF
    Despite international advancements in gender equality across a variety of societal domains, the underrepresentation of girls and women in Science, Technology, Engineering, and Mathematics (STEM) related fields persists. In this study, we explored the possibility that the sex difference in mathematics anxiety contributes to this disparity. More specifically, we tested a number of predictions from the prominent gender stratification model, which is the leading psychological theory of cross-national patterns of sex differences in mathematics anxiety and performance. To this end, we analyzed data from 761,655 15-year old students across 68 nations who participated in the Programme for International Student Assessment (PISA). Most importantly and contra predictions, we showed that economically developed and more gender equal countries have a lower overall level of mathematics anxiety, and yet a larger national sex difference in mathematics anxiety relative to less developed countries. Further, although relatively more mothers work in STEM fields in more developed countries, these parents valued, on average, mathematical competence more in their sons than their daughters. The proportion of mothers working in STEM was unrelated to sex differences in mathematics anxiety or performance. We propose that the gender stratification model fails to account for these national patterns and that an alternative model is needed. In the discussion, we suggest how an interaction between socio-cultural values and sex-specific psychological traits can better explain these patterns. We also discuss implications for policies aiming to increase girls' STEM participation
    corecore