
1 
 

Investigation of exomic variants associated with overall survival in ovarian cancer 

Stacey J Winham*1, Ailith Pirie*2, Yian Ann Chen3, Melissa C Larson1, Zachary C Fogarty1, Madalene A 

Earp4, Hoda Anton-Culver5, Elisa V Bandera6, Daniel Cramer7,8, Jennifer A Doherty9, Marc T Goodman10, 

Jacek Gronwald11, Beth Y Karlan12, Susanne K Kjaer13,14, Douglas A Levine15, Usha Menon16, Roberta B 

Ness17, Celeste L Pearce18, Tanja Pejovic19,20, Mary Anne Rossing21,22, Nicolas Wentzensen23, Yukie T 

Bean19,20, Maria Bisogna15, Louise A Brinton23, Michael E Carney24, Julie M Cunningham25, Cezary 

Cybulski26, Anna deFazio27,28, Ed M Dicks29, Robert P Edwards30, Simon A Gayther18, Aleksandra Gentry-

Maharaj16, Martin Gore31, Edwin S Iversen32, Allan Jensen13, Sharon E Johnatty33, Jenny Lester12, Hui-Yi 

Lin3, Jolanta Lissowska34, Jan Lubinski11, Janusz Menkiszak35, Francesmary Modugno30,36,37, Kirsten B 

Moysich38, Irene Orlow39, Malcolm C Pike18,39, Susan J Ramus18, Honglin Song29, Kathryn L Terry7,8, 

Pamela J Thompson10, Jonathan P Tyrer29, David J van den Berg18, Robert A Vierkant1, Allison F Vitonis7, 

Christine Walsh12, Lynne R Wilkens40, Anna H Wu18, Hannah  Yang23, Argyrios Ziogas41, Andrew 

Berchuck42; Georgia Chenevix-Trench on behalf of Australian Ovarian Cancer Study Group28,33,43,44; 

Joellen M Schildkraut45, Jennifer Permuth-Wey3, Catherine M Phelan3, Paul D P Pharoah29, Brooke L 

Fridley47, Thomas A Sellers#3, and Ellen L Goode#4  

1. Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo 
Clinic, Rochester, MN, USA. 

2. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, 
University of Cambridge, Cambridge, UK. 

3. Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, 
Tampa, FL, USA. 

4. Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, 
USA. 

5. Department of Epidemiology, University of California Irvine, Irvine, CA, USA. 
6. Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New 

Brunswick, NJ, USA. 
7. Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard 

Medical School, Boston, MA, USA. 
8. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA. 
9. Section of Biostatistics and Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, 

NH, USA. 
10. Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, 

USA. 
11. Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland. 
12. Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical 

Center, Los Angeles, CA, USA. 
13. Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark. 
14. Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark. 
15. Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, 

NY, USA. 
16. Gynaecological Cancer Research Centre, Department of Women’s Cancer, Institute for Women's 

Health, UCL, London, UK. 
17. The University of Texas School of Public Health, Houston, TX, USA. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79501575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

18. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 
Los Angeles, CA, USA. 

19. Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 
USA. 

20. Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. 
21. Department of Epidemiology, University of Washington, Seattle, WA, USA. 
22. Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research 

Center, Seattle, WA, USA. 
23. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA. 
24. John A Burns School of Medicine, Obstectrics and Gynecology, University of Hawaii, Honolulu, 

HI, USA. 
25. Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo 

Clinic, Rochester, MN, USA. 
26. International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian 

Medical Academy, Szczecin, Poland. 
27. Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia. 
28. Center for Cancer Research, University of Sydney at Westmead Millennium Institute, Sydney, 

Australia. 
29. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, 

Cambridge, UK. 
30. Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic 

Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 
31. Gynecological Oncology Unit, The Royal Marsden Hospital, London, UK. 
32. Department of Statistical Science, Duke University, Durham, NC, USA. 
33. Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia. 
34. Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer 

Center & Institute of Oncology, Warsaw, Poland. 
35. Department of Surgical Gynecology and Gynecological Oncology of Adults and Adolescents, 

Pomeranian Medical University, Szczecin, Poland. 
36. Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, 

Pittsburgh, PA, USA. 
37. Womens Cancer Research Program, Magee-Women's Research Institute and University of 

Pittsburgh Cancer Institute, Pittsburgh, PA, USA. 
38. Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA. 
39. Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New 

York, NY, USA. 
40. Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA. 
41. Department of Epidemiology, Center for Cancer Genetics Research and Prevention, School of 

Medicine, University of California Irvine, Irvine, CA, USA. 
42. Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA. 
43. Cancer Division, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia. 
44. Peter MacCallum Cancer Institute, Melbourne, VIC, Australia. 
45. Public Health Services, University of Virginia, Charlottesville, Virginia, USA.  
46. Kansas IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of 

Kansas Cancer Center, Kansas City, KS, USA. 

 
*Equal contributions 



3 
 

#Equal contributions 
  
 

Running Title: Exomic variants associated with ovarian cancer survival 

Keywords:  epithelial ovarian cancer, overall survival, exome 

Financial Support 

Funding for this study was supported by the National Institutes of Health Office of Research on 

Women’s Health (Building Interdisciplinary Careers in Women’s Health award K12HD065987; S.J. 

Winham) and Genetic Associations and Mechanisms in Oncology (GAME-ON), a NCI Cancer Post-GWAS 

Initiative (U19-CA148112; T.A.Sellers). G. Chenevix-Trench is supported by Fellowships from NHMRC.  A. 

de Fazio is supported by the University of Sydney Cancer Research Fund and the Cancer Institute NSW 

through the Sydney West Translational Cancer Research Centre. C.M. Phelan is funded in part by NIH 

R01 CA-149429. A. Pirie is funding in part by a Medical Research Council Studentship. A. Gentry-Maharaj 

is supported by Eve Appeal and the Oak Foundation.  

In addition, the individual study sites were supported by: AUS: U.S. Army Medical Research and Materiel 

Command (DAMD17-01-1-0729; G.Chenevix-Trench), National Health & Medical Research Council of 

Australia (199600 and 400281; G.Chenevix-Trench), Cancer Councils of New South Wales, Victoria, 

Queensland, South Australia and Tasmania, Cancer Foundation of Western Australia. DOV: Funding for 

this study was provided by U19-CA148112 (T. Sellers); HAW: U.S. National Institutes of Health (R01-

CA58598, N01-CN-55424 and N01-PC-67001; M.T. Goodman); HOP: US Army Medical Research and 

Material Command DAMD17-02-1-0669 (F. Modugno); NCI K07-CA080668, R01-CA95023, R01-

CA126841 (F. Modugno); P50-CA159981 (F. Modugno); NIH/National Center for Research 

Resources/General Clinical Research Center grant M01-RR000056 (F. Modugno); LAX: American Cancer 

Society Early Detection Professorship (SIOP-06-258-01-COUN; B.Y. Karlan) and the National Center for 

Advancing Translational Sciences (NCATS), Grant UL1TR000124 (B.Y. Karlan); MAL: Funding for this study 

was provided by research grant R01- CA61107 from the National Cancer Institute, Bethesda, MD (S.K. 

Kjaer and A. Jensen); research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark 

(S.K. Kjaer and A. Jensen); and the Mermaid I project (S.K. Kjaer and A. Jenesn); MAC and MAY: National 

Institutes of Health (R01-CA122443, P30-CA15083, P50-CA136393; E.L. Goode); NCO: Department of 

Defense (DAMD17-02-1-0666; J.M. Schildkraut); NEC: National Institutes of Health R01-CA54419 and 

P50-CA105009 and Department of Defense W81XWH-10-1-02802 (K.L. Terry); NJO: National Cancer 

Institute (NIH-K07 CA095666, NIH-K22-CA138563, and P30-CA072720; E.V. Bandera) and the Cancer 

Institute of New Jersey ( E.V. Bandera); ORE: OHSU Foundation (T. Pejovic); POC: Pomeranian Medical 

University (J. Gronwald); RMH: Cancer Research UK (no grant number is available), Royal Marsden 

Hospital (P.D. Pharoah); SEA: Cancer Research UK (C490/A10119 C490/A10124; P.D. Pharoah); UK 

National Institute for Health Research Biomedical Research Centres at the University of Cambridge, 

SEARCH team, Craig Luccarini, Caroline Baynes, Don Conroy; UKO: The UKOPS study was funded by The 

Eve Appeal (The Oak Foundation) and supported by the National Institute for Health Research University 

College London Hospitals Biomedical Research Centre (U. Menon and S.A. Gayther). USC: P01-CA17054, 



4 
 

P30-CA14089, R01-CA61132, N01-PC67010,  N01-CN025403 (M.C. Pike), R03-CA113148, R03-CA115195 

(C.L. Pearce) and California Cancer Research Program (00-01389V-20170, 2II0200; A. Wu).  

Correspondence:  Ellen L. Goode, Ph.D., M.P.H., Department of Health Sciences, Research, Mayo Clinic, 

200 First Street SW, Rochester, MN 55905, USA, Phone 507/266-7997, Fax 507/266-2478, Email 

egoode@mayo.edu 

Conflict of Interest: The authors have no conflicts of interest to disclose. 

Word Count: 4,228 

Number of Tables: 3 

Number of Figures: 3  

mailto:egoode@mayo.edu


5 
 

Abstract 

Background:  While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, 

few associations have been reported with overall survival.  In the absence of common prognostic 

genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival 

and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer 

Association Consortium (OCAC).   

Methods:  The primary patient set (Set 1) included 14 independent EOC studies (4293 patients) and 

227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1744 patients) 

and 114,620 variants.  Because power to detect rare variants individually is reduced, gene-level tests 

were conducted. Sets were analyzed separately at individual variants and by gene, and then combined 

with meta-analyses (73,203 variants and 13,163 genes overlapped).   

Results:  No individual variant reached genome-wide statistical significance.  A SNP previously 

implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest 

evidence of association with survival and similar effect size estimates across sets (Pmeta=1.1E-6, 

HRSet1=1.17, HRSet2=1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were 

significantly associated with survival after multiple testing correction (Pmeta=1.1E-6; Pcorrected=0.01).   

Conclusions: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall 

survival, although further study is needed. 

Impact:  This study represents the first exome-wide association study of EOC survival to include rare 

variant analyses, and suggests that complementary single variant and gene-level analyses in large 

studies are needed to identify rare variants that warrant follow-up study.  
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Introduction 

 Epithelial ovarian cancer (EOC) is diagnosed in over 230,000 women world-wide every year and 

it is a leading cause of cancer death (1). Most women are diagnosed with advanced stage disease, when 

five-year survival rates are low (2, 3).  Several clinical and demographic factors are associated with 

survival, such as stage, grade and histological subtype (4), but few germline prognostic variants have 

been identified (5).  The strongest known genetic risk factors for EOC are rare BRCA1 and BRCA2 

mutations (6), which also confer differences in clinical characteristics including improved five-year, but 

not ten-year, survival (7-9).  Although genome-wide association studies (GWAS) to identify common risk 

loci have been fruitful (10-15), studies of survival have been less so (5).  For example, variant rs8170 at 

the 19p13 locus—a region associated with ovarian and breast cancer risk phenotypes and known to 

interact with BRCA1 (10, 16)— was associated with EOC survival in an initial phase of a GWAS (HR=1.35, 

P=2.4E-4) conducted by the Ovarian Cancer Association Consortium (OCAC), but not replicated in an 

independent dataset (HR=1.01, P=0.85) (10). 

 While the lack of identified common germline prognostic markers from earlier GWAS may be 

due to inadequate power (due to limited sample size or study heterogeneity), it is also possible that rare 

variants (in addition to those in BRCA1 and BRCA2) not captured in GWAS arrays may be associated with 

overall EOC survival.  In fact, it has been suggested that multiple rare variants of large effect could 

collectively be responsible for some of the ‘missing heritability’ not explained by the common variants of 

modest effect identified through GWAS (17).  Motivated by this rare variant hypothesis (18), commercial 

genotype arrays based on exome sequencing studies that attempted to capture all variants (common 

and rare) within coding regions have emerged as a new approach. As single marker tests have very little 

power to detect association with rare variants, approaches that pool information across all variants 

within a gene region may provide improved power (19-23).  We hypothesize that rare variants, either 
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individually or collectively across a gene, may be associated with overall survival in EOC.  To test this 

hypothesis, we combined data from two exome-based OCAC genotyping projects that used commercial 

arrays based on 16 major exome sequencing projects (24).  With over 6,000 EOC patients, this is the first 

exome-wide rare variant assessment of genetic associations with EOC overall survival.   

 

Materials and Methods 

Study Participants 

Study participants included 20 independent studies of EOC (Supplemental Table S1), which 

consisted of two sample sets that were genotyped separately on different platforms.  

Set 1: For Set 1, 14 independent studies of EOC (DOV, HAW, HOP, LAX, MAC, MAY, MSK, NCO, 

NEC, NJO, ORE, POL, UCI, USC) served as the primary sample (Supplemental Table S1), including 6293 

patients. Patients consisted of women aged 18 and older with a pathologically confirmed primary 

invasive EOC, fallopian tube cancer, or primary peritoneal cancer, excluding Brenner tumors or those 

missing tumor histology. Patients were excluded with incomplete survival time information, such as 

missing vital status or time from diagnosis to follow-up, resulting in 4,976 patients.  To avoid potential 

issues with population stratification, only patients of European ancestry were analyzed (N=4293; 2257 

deaths at 10 years post-diagnosis).   

 Set 2: The smaller Set 2 consisted of six additional independent studies of invasive EOC (AUS, 

MAL, POC, RMH, SEA, UKO) (Supplemental Table S1) with 1878 patients of European ancestry. To 

increase statistical power, Set 2 was combined with Set 1 via meta-analysis (due to separate 

genotyping). Patients with incomplete survival time information (e.g. missing vital status, enrollment 

greater than 10 years after diagnosis) were excluded, resulting in 1744 patients available for analysis 

(1027 deaths at 10 years post-diagnosis). Sixteen patients had missing follow-up time, and were set to 
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the median follow-up time of the study; six patients had incomplete time-to-entry information, and 

were set to entry at time zero. Characteristics of both sample sets are described in Table 1. Both patient 

sets consist of predominantly patients with high-grade serous histology, although Set 1 also includes a 

large number of endometrioid patients.  

Genotyping and Quality Control 

For Set 1, genotyping was performed using genomic DNA and whole genome amplified (WGA) 

DNA for 5904 and 389 patients, respectively. Genotyping was performed at Affymetrix Corporation 

using the Affymetrix Axiom Exome Array (www.affymetrix.com) of 409,582 markers, including standard 

content markers, as well as 100,000 custom markers chosen based on preliminary survival associations, 

follow-up of prior risk associations, and non-coding candidate gene variants.  The default quality control 

(QC) criteria recommended by Affymetrix was applied to all samples, and then the WGA and genomic 

samples were processed separately.  For genomic samples, genotypes were recalled using Powertool for 

variants with MAF < 5%, and samples and variants with call rates < 97% were excluded.  WGA samples 

and variants with call rates < 97% were also excluded and then merged with genomic samples, resulting 

in 384,029 variants.  Excluding monomorphic variants, 227,892 variants were used in analysis. 

For Set 2, patients contributed genomic DNA samples that were genotyped at the University of 

Cambridge on the Illumina Infinium HumanExome BeadChip (www.Illumina.com) at a total of 247,840 

exonic markers.  Genotype calling was carried out according to Best Practice Guidelines using the 

GenCall module in Illumina's Genome Studio with a default GenCall threshold of 0.15 (25).  Samples with 

low call rate (<99%), high or low heterozygosity based on common SNPs (MAF ≥ 0.05), and ambiguous 

sex or relatedness were excluded. A total of 130,909 variants were monomorphic and 147 variants were 

excluded due to low call rate, resulting in 114,620 markers.   
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Of the 73,203 variants overlapping on both genotyping arrays, a majority are rare variants 

(median MAF=0.0028, IQR=0.068) and coding variants (89.2%). Supplemental Figure S1 displays the MAF 

distribution by functional category. 

Single Variant Analysis 

Both patient sets were analyzed using Cox proportional hazards regression to estimate the 

association of each variant with overall 10-year survival time. For each variant, a Cox proportional 

hazards model was fit to the number of copies of the minor allele, and a likelihood ratio test was 

conducted, accounting for left truncation (26) and right-censoring after 10 years. For top variants, 

Kaplan-Meier curves were also generated that account for left truncation and right censoring. Because 

the primary and secondary patient sets were genotyped separately and on different platforms, they 

were analyzed separately. 

For the primary patient set, models were first minimally adjusted for age, site, and three 

principal components (PCs) to account for population stratification. PCs were computed based on 

common variants (MAF > 1%, HWE p > 1E-7) using the study patients, as well as HapMap subjects. 

Additionally, the following clinical factors with univariate survival associations of p<0.05 and with 

p<0.0001 in multivariable modelling were included as covariates along with three PCs: age, stage, grade, 

histology, and site.  Both sample sets consisted of patients of primarily serous histology, although Set 1 

also included many endometrioid cases. Therefore all histologies were included in analyses (N=4293), 

but histological subtype-specific analyses were also conducted for high-grade serous (N=3149) and 

endometrioid subtypes (N=735), because some candidate variants were targeted for these subtypes.  

Variants with p < 2.2E-7 were considered significant after Bonferroni correction for multiple testing. 

Because the sample size of Set 2 was relatively small, its primary utility was to improve power 

and provide supportive evidence for the primary results via meta-analysis; the patient sets were 
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genotyped separately, which limited the ability to conduct a pooled analysis.  For Set 2, Cox proportional 

hazards analyses (accounting for left truncation and right-censoring after 10 years) were conducted 

using minimal adjustments as above; no other covariates were associated with the outcome and 

therefore additional adjustments were not included due to the smaller sample size. Fixed effect meta-

analyses were conducted for the overlapping variants on both the Affymetrix and Illumina platforms 

(73,203 variants), based on the likelihood ratio summary statistics from the minimally adjusted Set 1 and 

Set 2 analyses.  Single variant meta-analysis was conducted using the R package ‘rMeta’ (http://cran.r-

project.org/web/packages/rmeta/). All analyses were conducted in R version 3.0.2 (http://www.R-

project.org/). 

Gene-Level Analysis 

 As single variant analyses are under-powered for rare variants, gene-level tests were also used. 

Variants were mapped to genes based on Human Genome Build 37 and annotation supplied by 

Affymetrix and Illumina, resulting in 18,323 genes analyzed in Set 1 and 13,191 genes analyzed in Set 2.  

To be included in gene-level analysis, genes were required to contain at least two SNPs.  Gene-level 

testing was conducted on both the sample sets separately using burden tests, as well as Sequence 

Kernel Association Test (SKAT) for Cox proportional hazards models (27). The gene-level burden test is a 

weighted sum of the genotypes of all variants with a gene regressed on survival time (20). The gene-

level SKAT statistic is a weighted sum of the single variant likelihood ratio test statistics, across all 

variants within a gene (23).  Variant weights were computed as a function of MAF, where all variants 

were included, and rare variants received much greater weight; specifically, the weight function used 

was √𝑤𝑗=Beta(MAFj,1,25) for each variant j (23). Minimally adjusted (Sets 1 and 2) and fully-adjusted 

tests (Set 1) were computed as described above for single variant tests. Gene-level tests (SKAT and 

burden tests) were computed using the R package ‘seqMeta’ (http://cran.r-

project.org/web/packages/seqMeta/), with minor modifications to accommodate left-truncated data.  

http://cran.r-project.org/web/packages/rmeta/
http://cran.r-project.org/web/packages/rmeta/
http://www.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/web/packages/seqMeta/
http://cran.r-project.org/web/packages/seqMeta/
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As with the single variant tests, meta-analyses of gene-level tests across the sample sets were 

also conducted.  For the purpose of meta-analysis only, variants that were monomorphic in one set but 

not the other were included to provide information on MAF across both studies.  A total of 13,163 genes 

available in both sample sets were meta-analyzed using the R-package ‘seqMeta’. Genes with p<3.8E-6 

were considered significant after Bonferroni correction for multiple testing. Sensitivity analyses were 

conducted for variants with MAF<0.05, MAF<0.10, and MAF<0.25, as well as for coding variants only. 

 

Results 

Single variants 

 Results for all 73,203 variants included in the meta-analysis of 6,054 invasive EOC patients are 

displayed in Figure 1. Three variants were associated with overall survival at p-values < 1.0E-4, including 

two with MAF < 0.001 (Table 2).  The top ranking variant in the meta-analysis was common variant 

rs8170 in BABAM1 at 19p13.11 (Pmeta=1.14E-6), previously reported to be associated with EOC risk (10); 

the minor allele of this variant was associated with decreased survival in both sets (HR1=1.17, HR2=1.14; 

Figure 2).  Additional top ranking variants were rare non-synonymous variants rs140079492 in PAK7 

(P21 protein (cdc42/rac)-activated kinase) at 20p12.2 ((Pmeta=9.32E-6) and rs34335714 in CTSW 

(cathepsin W) at 11q13.1 (Pmeta=4.91E-5, Table 2).  

 Despite reduced sample size compared to meta-analysis, Set 1-specific results are also of 

interest due to the much larger number of variants targeted than in Set 2 (including custom candidate 

variants); therefore we also report the results of all variants analyzed in Set 1 (including those non-

overlapping with Set 2).  In this primary EOC sample set (4293 patients), with adjustment for age, site, 

stage, grade, histology, and PCs, 24 variants in 11 chromosomal regions showed evidence of association 

with overall survival with P<5.0E-5, although none of these associations are significant after correction 
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for multiple testing. Genome-wide results are plotted in Supplemental Figure S2, and top variants are 

described in Supplemental Table S2. The variant most strongly associated with survival was rs7642051, a 

common variant (MAF=0.46) in LMCD1-AS1 (LMCD1 antisense RNA 1) at 3p26.1 (p=4.10E-6); its minor 

allele was associated with decreased survival (HR=1.15; Supplemental Table S2, Supplemental Figure 

S3). Several correlated variants in an intergenic region of chromosome 1 between UBE2U and CACHD1 

(1p31.3), targeted due to a prior study of overall survival, also showed modest evidence for association 

with survival (Supplemental Figure S4).  This region showed similar results for the high grade serous 

subtype (data not shown).  Among patients with endometrioid subtype, the most strongly associated 

variant was rs757759 in TBXAS1 at 7q34 (HR=1.78, P=1.55E-6, MAF=0.23). 

Gene-level 

 Results for all 13,163 genes included in the meta-analysis across Sets 1 and 2 are displayed in 

Figure 3. Five genes had meta-analysis p<1.0E-4 based on the burden test, and four of these genes 

showed evidence of association in both sets separately (Table 3). The top-ranking gene was ATG2B 

(Pmeta=1.08E-6), which was significant after multiple testing correction based on 13,163 genes 

(Pcorrected=0.014). Out of 17 single variants meta-analyzed in ATG2B at 14q32.2, nine had p<0.10 

(Supplemental Figure S5) and 15 with positive effect size estimates (HR>1.0); of note, variants were 

largely uncorrelated (pairwise r2 <0.2), and most were rare (16 with MAF<0.01; median=5.9E-4, 

range=1.7E-4 – 6.8E-3).  When restricted to the high-grade serous subset, ATG2B remains the top gene 

(Pmeta=1.75E-6). Other genes of interest across all histologies include zinc finger protein PEG3 

(Pmeta=1.82E-5), helicase-like transcription factor HLTF (Pmeta=1.9E-5), mitochondrial fission regulator 1-

like gene MTFR1L (p=3.1E-5), and T-cell surface glycoprotein CD1E (Pmeta=8.78E-5; Table 3).  Results 

differed based on the SKAT meta-analysis; while gene-rankings were relatively similar to the burden test, 

p-values were higher (min P=1.17E-4 for ZNF131). In particular, the meta-analysis p-value based on SKAT 
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for ATGB2 was p=0.006 (Table 3).  Although top-ranked in single variant analyses, BABAM1 was not 

significant at the gene-level (Pburden=0.83, PSKAT=0.53).  

In analysis of Set 1 alone, when adjusted for age, site, stage, grade, histology, and PCs, five 

genes showed evidence of association with overall survival at P<1.0 x 10-4 from the burden test, 

although none of these associations are significant after multiple testing correction based on number of 

genes (Supplemental Table S3); results were similar using SKAT (Supplemental Figure S6).  The top-

ranked genes were POGLUT1 (protein O-glucosyltransferase 1; Pburden=7.10E-6, PSKAT=8.33E-6), ST20 

(suppressor of tumorigenicity 20; Pburden=2.32E-5, PSKAT=2.32E-5), and ATG2B (autophagy related 2B; 

Pburden=5.16E-5, PSKAT=3.23E-2)—the most significant gene in meta-analysis.  Additionally, consistent with 

individual variant analysis, variation in UBE2U showed some evidence of association (36 variants, 

Pburden=5.07E-4, PSKAT=4.95E-4), although evidence was less strong in the CACHD1 region (65 variants, 

Pburden=0.004, PSKAT=0.025).  Gene-level results were similar when restricted to patients with high-grade 

serous subtype, when restricted to variants with MAF<0.05, MAF<0.10, and MAF<0.25, and when 

restricted to only coding variants (data not shown); ATG2B remained the top gene, with meta-analysis p-

values based on a burden test ranging from 3.94E-7 to 1.08E-6. 

 

Discussion 

To our knowledge, this study represents the first exome-wide assessment of association 

between EOC survival and rare genetic variation, both for single variants and for genes, including over 

6000 patients.  By combining data from two exome-based OCAC genotyping projects, genome-wide 

significant findings were identified at the gene-level in ATG2B (Pmeta=1.1E-6, Pcorrected=0.01); and, in 

analysis of approximately 73,000 variants, the known EOC susceptibility variant rs8170 in BABAM1 arose 

as the most statistically significant (Pmeta=1.1E-6), followed by non-synonymous variants rs140079492 in 
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PAK7 (serine/threonine-protein kinase; missense mutation Glu → Gly) and rs34335714 in CTSW 

(cathepsin W; missense mutation Ser → Asn, predicted splice variant).  As genotype imputation methods 

are known to be unreliable in the context of rare variation (28, 29), the use of direct genotyping is an 

important strength of this report. 

ATG2B, the survival-associated gene based on burden testing, is a key autophagy gene residing 

on chromosome 14q32.2.  Autophagy is a cell death process which uses degradation of lysosomal 

cytoplasmic components; in cancer, it is thought to link apoptosis with programmed necrosis and has 

been proposed as an alternative target to treat tumor resistance (30).  It is regulated by several 

microRNAs, including mir-30d and mir-130a (31, 32), and has recently been linked to precursors of 

pancreatic cancer (33).   Here, up to 34 ATG2B variants genotyped in either Sets 1 or 2 associated in 

combination with EOC survival; this was consistent with the trends of individual ATG2B variants, where 

nine of 17 ATG2B variants observed in both sets had p<0.10 in the meta-analysis.  These results suggest 

that ATG2B may warrant targeted sequencing in large datasets to confirm the existence of potentially 

rare, inherited prognostic variants. 

Although not statistically significant after correction for multiple testing, BABAM1 rs8170 at 

19p13, the top ranking individual variant across both sample sets (adjusting for age, site, and PCs), 

warrants attention.  This synonymous coding variant is relatively common (MAF=0.20) and is included 

on multiple commercial GWAS arrays, as well as the Affymetrix and Illumina exome-based arrays used 

here.  Its MAF contributed to increased power to its detection over the rarer variants on the arrays.  

BABAM1 rs8170 is known to associate with EOC risk (10), with triple-negative breast cancer risk (34), 

and with risk of ovarian cancer and estrogen-negative subtypes of breast cancer among BRCA1 and 

BRCA2 mutation carriers (16, 35). The estimated hazard ratio in meta-analysis was 1.16, which roughly 

translates to a 16% reduction in median survival time for patients with one copy of the minor allele 

compared to those with no copies (36).   Sensitivity analysis of the current data show that when also 
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adjusted for stage, grade, and histology, the rs8170 effect size was slightly reduced (HR=1.11 vs. 

HR=1.17; P=4.33E-5). However, when the analysis was restricted to patients with high-grade serous 

cancer, effect size estimates were relatively robust whether adjusted for age, site, and PCs (HR=1.17, 

P=4.66E-5) or also stage and grade (HR=1.14, P=8.02E-5). Additional patient subset analyses may 

uncover other patterns of survival; for example, for a subset of OCAC with available data regarding 

detailed treatment strategies, no association of rs8170 with overall survival or progression free survival 

was observed after stratifying by treatment (37).  Although prior EOC survival studies yielded 

inconsistent results (10), unpublished meta-analysis of genotyped and imputed variation at rs8170 from 

a much larger sample of over 18,000 EOC patients (including the majority of those in the current study 

and all of the patients from a prior EOC survival study(10)) revealed a genome-wide significant 

association (HR=1.15, P=4.7E-9) (Pharoah et al, personal communication).  Altogether, the BABAM1 

region containing rs8170 is clearly of importance to ovarian cancer and will be subjected to fine-

mapping and detailed functional analyses.   

 As one of the early GWAS using exome-based Affymetrix and Illumina genotyping arrays, we 

note some rare variant analytical lessons learned.  Single variant analyses often yielded different results 

than the aggregate gene-level tests, and represent useful, complementary analysis strategies. Because 

single variant tests were subject to reduced power to detect associations with rare variants, only 

associations with common variants (such as rs8170) and rare variants with extremely large effect sizes 

were detectable.  For example, in the single variant meta-analysis, the median MAF is less than 0.005, 

which translates to less than 60 subjects out of the combined Set 1 and Set 2 sample size of 6037 that 

can be expected to harbor at least one copy of the rare allele. For rare variants with MAF of 0.005, we 

have 80% power to detect hazard ratios greater than 2.9, and for even rarer variants, only much larger 

hazard ratios would be detectable with this sample size.  Thus, larger sample sets will be necessary to 

rule out or detect individual associations with the approximately 70,000 variants that were individually 
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meta-analyzed here.  However, because gene-level tests consider all variants within a region and weight 

rare variants more heavily, they are able to identify associations with regions that contain many variants 

with moderate evidence of association; for example, no variant in ATG2B had a meta-analysis p-

value<0.001, yet it was genome-wide significant at the gene-level. 

 The most powerful gene-level analysis tool is dependent on the underlying genetic etiology of 

the trait, and because the true genetic architecture of EOC survival is unknown, we used two methods 

for gene-level testing that have been shown to be powerful under different scenarios(20, 27).  While the 

gene rankings using a burden test or SKAT were similar, the p-values based on the SKAT analysis were 

often higher, suggesting that SKAT may be less powerful, consistent with simulation studies (23).  The 

burden test assumes that the direction of effect for each variant within the gene region is the same, 

while SKAT does not assume consistent effect direction. Therefore the burden test will be more 

powerful to detect rare variants if the true causal effects are in the same direction (23); because our 

outcome of interest in this study was survival, it is not unreasonable to assume that rare variants would 

increase risk of death (rather than the converse), although of course the true underlying genetic model 

of EOC survival remains unknown.  In fact, for ATG2B (where the SKAT p-value was higher than the 

burden p-value), all but one of the nine variants with meta-p<0.10 had estimated hazard ratios greater 

than 1.0.  

 The findings of this study should be considered in the context of the following limitations, in 

addition to sample size.  The two patient sets were genotyped separately on different platforms that 

targeted different variants due to differences in chemistry (Affymetrix vs. Illumina), even though both 

panels were designed from a common set of variants from the Exome Sequencing Project (24).  This is 

far from ideal, not only requiring extensive additional data harmonization measures, but limiting our 

ability to conduct a pooled analysis and restricting meta-analysis to a reduced set of variants (only 
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73,203 combined from 227,892 Set 1 and 114,620 Set 2 variants) and genes (only 13,163 combined from 

18,323 Set 1 and 13,191 from Set 2 genes) that were observed in both sets.  Therefore many rare 

variants that were observed in the larger Set 1 were not assessed in Set 2.  Furthermore, although also a 

strength, approximately 25% of the Affymetrix array was customized content, and therefore not 

interrogated in Set 2, including the intergenic region in chromosome 1 between UBE2U and CACHD1.  

Imputation to a denser set of variants, for example using 1000 Genomes Project data, is known to be 

unreliable based on rare variants and was therefore not performed; future work to integrate these data 

with other available genotypes for these patients will be informative.  Additionally, while all patients 

underwent surgery, the important clinical factors of optimal debulking and type of treatment (e.g. 

chemotherapy) could not be included as covariates or stratification factors due to a large amount of 

missing data; both should be examined in future genetic studies to assess their impact on survival 

outcomes.  Finally, it should be noted that some of the data analyzed here were not independent from 

previous OCAC EOC overall survival reports(5, 10, 38); specifically, some variants on the exome arrays 

were also on GWAS or candidate gene arrays which had previously been used on a subset of the current 

patients.  However, the vast majority of the current array content was largely used to test the novel rare 

variant hypothesis. 

 Lastly, this study comprised data from 20 OCAC studies, with differing ascertainment strategies 

and methods for clinical follow-up of cases, resulting in the potential for increased study heterogeneity 

in the overall survival outcome measure. While we adjusted for study site in all models, uncaptured 

heterogeneity across studies (such as differences in treatment strategies over time and across medical 

institutions) will lead to increased noise and reduced power.  In future studies, more refined outcome 

measures targeted at reducing this heterogeneity could improve power. For example, because first-line 

therapy may differ from treatment strategies after a recurrence, progression free survival may be a 

more optimal endpoint, although this measure is also susceptible to study site heterogeneity. Because 
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recurrence data was not widely available for all patients across all sites, it was not considered as a 

primary endpoint in this study. However, analysis of the association between rs8170 and progression 

free survival were consistent with the results observed for the overall survival outcome (HRmeta=1.15, 

Pmeta=1.3E-6, 95% CI=1.09-1.22).  

To summarize, in the absence of associations between common genetic variants and EOC 

survival, we examined the role of primarily rare exonic variants, individually and collectively across 

genes, using partially customized commercial arrays in over 6000 patients.  While no individual variants 

were significant at the genome-wide level, ATG2B showed gene-level evidence of association with 

overall survival, and BABAM1 rs8170 was again highlighted to be of particular relevance.  This suggests 

potential candidates for future studies that may lead to targets for improved EOC outcomes, although 

follow-up in the larger sample of OCAC subjects not included here, as well as a focus on reducing the 

heterogeneity in the outcome measure, will be critical. 
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Tables 

Table 1: Characteristics of EOC sample sets. 

Sample Set 1 Sample Set 2 

 Alive 
(N=2036) 

Deceased 
(N=2257) 

Total 
(N=4293) 

Alive 
(N=717) 

Deceased 
(N=1027) 

Total 
(N=1744) 

Median Survival Time (years, 95% CI) 4.91 (4.65,5.21) 2.56 (2.44,2.68) 4.58 (4.41,4.77) 6.03 (5.70,6.43) 2.89 (2.69,3.08) 4.32 (4.10,4.60) 

       

Person Years (years) 10,737.46 6,169.05 16,906.51 3,545.56 2,805.42 6,350.98 

       

Grade            

    Well differentiated 288 (14.1%) 79 (3.5%) 367 (8.5%) 69 (9.6%) 72 (7.0%) 141 (8.1%) 

    Moderately differentiated 426 (20.9%) 370 (16.4%) 796 (18.5%) 109 (15.2%) 216 (21.0%) 325 (18.6%) 

    Poorly differentiated 886 (43.5%) 1318 (58.4%) 2204 (51.3%) 3237 (47.0%) 554 (53.9%) 891 (51.1%) 

    Undifferentiated* 276 (13.6%) 302 (13.4%) 578 (13.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

    Unknown 160 (7.9%) 188 (8.3%) 348 (8.1%) 202 (28.2%) 185 (18.0%) 387 (22.2%) 

           

Stage             

    Localized 436 (21.4%) 88 (3.9%) 524 (12.2%) 111 (15.5%) 32 (4.5%) 143 (8.2%) 

    Regional 444 (21.8%) 163 (7.2%) 607 (14.1%) 216 (30.1%) 239 (33.3%) 155 (26.1%) 

    Distant 1091 (53.6%) 1949 (86.4%) 3040 (70.8%) 244 (34.0%) 635 (88.6%) 879 (50.4%) 

    Unstaged/unknown 65 (3.2%) 57 (2.5%) 122 (2.8%) 146 (20.4%) 121 (16.9%) 267 (15.3%) 

              

Histology             

    Serous 1349 (66.3%) 1943 (86.1%) 3292 (76.7%) 706 (98.5%) 1018 (99.1%) 1724 (98.9%) 

    Endometrioid 536 (26.3%) 199 (8.8%) 735 (17.1%) 2 (0.3%) 2 (0.2%) 4 (0.2%) 

    Mucinous 37 (1.8%) 5 (0.2%) 42 (1.0%) 0 (0.0%) 1 (0.1%) 1 (0.1%) 

    Clear cell 25 (1.2%) 8 (0.4%) 33 (0.8%) 8 (1.1%) 3 (0.3%) 11 (0.6%) 

    Mixed cell 16 (0.8%) 21 (0.9%) 37 (0.9%) 1 (0.1%) 2 (0.2%) 3 (0.2%) 

    Other epithelial 73 (3.6%) 81 (3.6%) 154 (3.6%) 0 (0.0%) 1 (0.1%) 1 (0.1%) 

              

Age,  mean (SD) 56.8 (11.0) 60.7 (10.8) 58.8 (11.1) 56.7 (10.6) 60.2 (9.7) 58.8 (10.2) 

 

*Grade was based on a 4-tier grading system for Set 1 and a 3-tier grading system for Set 2.  
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Table 2: Results of single variant EOC overall survival association meta-analysis with meta p<1.0E-4. Analyses are adjusted for age, site, and three 

PCs. 

    Set 1 (N=4293)   Set 2 (N=1744)   Meta-Analysis 

Chr 
rsID 

(allele) 
Gene 

Annotati
on 

HR 
(95% 
CI) 

P MAF 

Total 
number 

of 
patients 

with 
minor 
allele 

Number 
of 

decease
d 

patients 
with 

minor 
allele 

HR (95% 
CI) 

P MAF 

Total 
number 

of 
patients 

with 
minor 
allele 

Number 
of 

decease
d 

patients 
with 

minor 
allele 

HR (95% CI) 
Meta 

P 

11 
rs34335

714 
(A/G) 

CTSW 
non-

synonym
ous 

5.34 
(2.00, 
14.25) 

0.0008 0.0007 
6 4 10.81 

(1.52, 
76.79) 

0.0174 0.0003 
1 1 

6.15 (2.56, 
14.79) 

4.91E
-5 

19 
rs8170 
(A/G) 

BABAM1 
previous 
GWAS 

hit 

1.17 
(1.09, 
1.26) 

2.23E-
5 

0.1966 
1446 839 

1.14 (1.03, 
1.26) 

0.0151 0.2124 
664 433 

1.16 (1.09, 
1.23) 

1.14E
-6 

20 
rs14007

9492 
(C/T) 

PAK7 
non-

synonym
ous 

3.41 
(1.42, 
8.19) 

0.0062 0.0006 
5 5 

8.52 (2.74, 
26.45) 

0.0002 0.0011 
4 3 

4.80 (2.40, 
9.61) 

9.32E
-6 
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Table 3: Results of gene-level EOC overall survival meta-analysis, with burden meta p<1.0E-4. CMAF=combined (sum) minor allele frequency 

across all variants in the gene. Analyses are adjusted for age, site, and three PCs. 

  Set 1 (N=4293)  Set 2 (N=1744)  Burden SKAT 

Chr Gene 
N 
variants 

CMAF 
Median 
MAF 

N 
variants 

CMAF  
Median 
MAF 

P Set 1 P Set 2 Meta P P Set 1 P Set 2 Meta P 

1 MTFR1L 8 0.0032 0.00024 5 0.0026 0.00057 2.21E-03 0.0028 3.13E-05 0.1089 0.0035 0.0037 

1 CD1E 12 0.5692 0.00047 3 0.3374 0.00057 9.29E-05 0.7255 8.78E-05 0.0002 0.7184 0.0002 

3 HLTF 17 0.7604 0.00128 7 0.0801 0.00659 1.09E-03 0.0049 1.91E-05 0.0310 0.0538 0.0096 

14 ATG2B 34 1.7512 0.00058 17 0.4765 0.00057 8.63E-05 0.0030 1.08E-06 0.0790 0.0078 0.0057 

19 PEG3 38 1.0465 0.00058 18 0.2036 0.00143 3.18E-04 0.0221 1.82E-05 0.0630 0.0856 0.0751 

 

Figure Legends 

 Figure 1: (A) Manhattan plot of single variant meta-analysis for variants present in both Set 1 and Set 2. –log10(p-values) are plotted by 

chromosomal location. Survival analysis was adjusted for age, site, and PCs. (B) QQ-plot of single variant meta-analysis; because some variants 

occur in multiple genes, there are dependencies among tests. 

Figure 2: Kaplan-Meier plot based on rs8170 genotype for Set 1 (A) and Set 2 (B). 

Figure 3: (A) Manhattan plot of gene-level meta-analysis for genes present in both Set 1 and Set 2. –log10(p-values) are plotted by chromosomal 

location. Survival analysis was based on the burden test, and adjusted for age, site, and PCs. (B) QQ-plot of gene-level meta-analysis; because 

some variants occur in multiple genes, there are dependencies among tests. 

 


