2,824 research outputs found

    An adjudicated hermeneutic single-case efficacy design study of experiential therapy for panic/phobia

    Get PDF
    This paper illustrates the application of an adjudicated form of Hermeneutic Single Case Efficacy Design (HSCED), a critical-reflective method for inferring change and therapeutic influence in single therapy cases. The client was a 61 year-old European-American male diagnosed with panic and bridge phobia. He was seen for 23 sessions of individual Process-Experiential/Emotion-Focused Therapy. In this study, affirmative and skeptic teams of researchers developed opposing arguments regarding whether the client changed over therapy and whether therapy was responsible for these changes. Three judges representing different theoretical orientations then assessed data and arguments, rendering judgments in favor of the affirmative side. We discuss clinical implications and recommendations for the future interpretive case study research

    Synthesizing Speech from Intracranial Depth Electrodes using an Encoder-Decoder Framework

    Full text link
    Speech Neuroprostheses have the potential to enable communication for people with dysarthria or anarthria. Recent advances have demonstrated high-quality text decoding and speech synthesis from electrocorticographic grids placed on the cortical surface. Here, we investigate a less invasive measurement modality in three participants, namely stereotactic EEG (sEEG) that provides sparse sampling from multiple brain regions, including subcortical regions. To evaluate whether sEEG can also be used to synthesize high-quality audio from neural recordings, we employ a recurrent encoder-decoder model based on modern deep learning methods. We find that speech can indeed be reconstructed with correlations up to 0.8 from these minimally invasive recordings, despite limited amounts of training data

    TFT & ULSIC: Interfacing large-area thin-film sensor arrays with CMOS circuits

    Get PDF
    Large-area, conformable sensing surfaces could find many applications by interfacing humans or machines users with their environment. Given the success of TFT backplanes for flat-panel displays, a promising approach is the fabrication of large integrated thin-film sensor arrays on single substrates. In thin-film technology the number of sensors can be made very large, and they can be deployed on rigid or flexible, conformably shapeable or even elastically stretchable substrates. Flat-panel displays suggest that TFT integration can be less costly than arrays made by placing and interconnecting discrete sensels. Equally important is that low-temperature thin-film technology can accommodate the diversity of materials required by the various sensor technologies. However, thin-film devices and circuits are slow. TFT circuits cannot compete directly with ULSI circuits in controlling large sensor arrays, or in signal processing and extracting the germane information from the huge number of signals that such arrays can generate. To combine the advantages of large-area integrated TFT circuits with the speed of ULSI circuits, we have been making hybrid systems that combine TFT and ULSIC [1]. Our work covers the range from thin-film device materials to subsystems implemented in thin-film technology, to co-designing and interfacing the large-area thin-film domain with the ULSIC domain. We have demonstrated systems for the sensing of mechanical strain [2], image detection [3], acoustic speaker localization [4], electro-encephalography [5], gestures [6], and patterns of pressure. Please click Additional Files below to see the full abstract

    Capacitance spectroscopy in quantum dots: Addition spectra and decrease of tunneling rates

    Full text link
    A theoretical study of single electron capacitance spectroscopy in quantum dots is presented. Exact diagonalizations and the unrestricted Hartree-Fock approximation have been used to shed light over some of the unresolved aspects. The addition spectra of up to 15 electrons is obtained and compared with the experiment. We show evidence for understanding the decrease of the single electron tunneling rates in terms of the behavior of the spectral weight function. (To appear in Phys. Rev. B (Rapid Comm.))Comment: 10 pages, Revtex, hard copy or PostScript Figures upon request on [email protected]

    Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges

    Get PDF
    Important operational changes that have gradually been assimilated and new approaches that are developing as part of the movement toward sustainable intensive aquaculture production systems are presented via historical, current, and future perspectives. Improved environmental and economic sustainability based on increased efficiency of production continues to be realized. As a result, aquaculture continues to reduce its carbon footprint through reduced greenhouse gas emissions. Reduced use of freshwater and land resources per unit of production, improved feed management practices as well as increased knowledge of nutrient requirements, effective feed ingredients and additives, domestication of species, and new farming practices are now being applied or evaluated. Successful expansion into culture of marine species, both off and on shore, offers the potential of substantial increases in sustainable intensive aquaculture production combined with integrative efforts to increase efficiency will principally contribute to satisfying the increasing global demand for protein and food security needs

    Applied Plasma Research

    Get PDF
    Contains research objectives and reports on three research projects.National Science Foundation (Grant GK-2581)Joint Services Electronics Program under Contract DA 28-043-AMC-02536(E

    Cygnus X-3 with ISO: investigating the wind

    Get PDF
    We observed the energetic binary Cygnus X-3 in both quiescent and flaring states between 4 and 16 microns using the ISO satellite. We find that the quiescent source shows the thermal free-free spectrum typical of a hot, fast stellar wind, such as from a massive helium star. The quiescent mass-loss rate due to a spherically symmetric, non-accelerating wind is found to be in the range 0.4-2.9 x 10E-4 solar masses per year, consistent with other infrared and radio observations, but considerably larger than the 10E-5 solar masses per year deduced from both the orbital change and the X-ray column density. There is rapid, large amplitude flaring at 4.5 and 11.5 microns at the same time as enhanced radio and X-ray activity, with the infrared spectrum apparently becoming flatter in the flaring state. We believe non-thermal processes are operating, perhaps along with enhanced thermal emission.Comment: Accepted for publication in MNRAS, 11 pages, 6 figure

    Plasmas and Controlled Nuclear Fusion

    Get PDF
    Contains research objectives and reports on four research projects.National Science Foundation (Grant GK-614)National Science Foundation (Grant GK-57

    Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    Get PDF
    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm322=(3.1±0.9)103\Delta m_{32}^2=(3.1\pm 0.9)\cdot 10^{-3} eV2^2 is obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
    corecore