161 research outputs found

    Characterization of Arterial Wave Reflection in Healthy Bonnet Macaques: Feasibility of Applanation Tonometry

    Get PDF
    Nonhuman primates are commonly used in cardiovascular research. Increased arterial stiffness is a marker of subclinical atherosclerosis and higher CV risk. We determined the augmentation index (AI) using applanation tonometry in 61 healthy monkeys (59% female, age 1–25 years). Technically adequate studies were obtained in all subjects and required 1.5 ± 1.3 minutes. The brachial artery provided the highest yield (95%). AI was correlated with heart rate (HR) (r = −0.65, P < .001), crown rump length (CRL) (r = 0.42, P = .001), and left ventricular (LV) mass determined using echocardiography (r = 0.52, P < .001). On multivariate analysis, HR (P < .001) and CRL (P = .005) were independent predictors of AI (R2 = 0.46, P < .001). Body Mass Index (BMI) and AI were independent predictors of higher LV mass on multivariate analysis (P < .001 and P = .03). In conclusion, applanation tonometry is feasible for determining AI. Reference values are provided for AI in bonnet macaques, in whom higher AI is related to HR and CRL, and in turn contributes to higher LV mass

    Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial

    Get PDF
    Background: Intraventricular haemorrhage is a subtype of intracerebral haemorrhage, with 50% mortality and serious disability for survivors. We aimed to test whether attempting to remove intraventricular haemorrhage with alteplase versus saline irrigation improved functional outcome. Methods: In this randomised, double-blinded, placebo-controlled, multiregional trial (CLEAR III), participants with a routinely placed extraventricular drain, in the intensive care unit with stable, non-traumatic intracerebral haemorrhage volume less than 30 mL, intraventricular haemorrhage obstructing the 3rd or 4th ventricles, and no underlying pathology were adaptively randomly assigned (1:1), via a web-based system to receive up to 12 doses, 8 h apart of 1 mg of alteplase or 0·9% saline via the extraventricular drain. The treating physician, clinical research staff, and participants were masked to treatment assignment. CT scans were obtained every 24 h throughout dosing. The primary efficacy outcome was good functional outcome, defined as a modified Rankin Scale score (mRS) of 3 or less at 180 days per central adjudication by blinded evaluators. This study is registered with ClinicalTrials.gov, NCT00784134. Findings: Between Sept 18, 2009, and Jan 13, 2015, 500 patients were randomised: 249 to the alteplase group and 251 to the saline group. 180-day follow-up data were available for analysis from 246 of 249 participants in the alteplase group and 245 of 251 participants in the placebo group. The primary efficacy outcome was similar in each group (good outcome in alteplase group 48% vs saline 45%; risk ratio [RR] 1·06 [95% CI 0·88–1·28; p=0·554]). A difference of 3·5% (RR 1·08 [95% CI 0·90–1·29], p=0·420) was found after adjustment for intraventricular haemorrhage size and thalamic intracerebral haemorrhage. At 180 days, the treatment group had lower case fatality (46 [18%] vs saline 73 [29%], hazard ratio 0·60 [95% CI 0·41–0·86], p=0·006), but a greater proportion with mRS 5 (42 [17%] vs 21 [9%]; RR 1·99 [95% CI 1·22–3·26], p=0·007). Ventriculitis (17 [7%] alteplase vs 31 [12%] saline; RR 0·55 [95% CI 0·31–0·97], p=0·048) and serious adverse events (114 [46%] alteplase vs 151 [60%] saline; RR 0·76 [95% CI 0·64–0·90], p=0·002) were less frequent with alteplase treatment. Symptomatic bleeding (six [2%] in the alteplase group vs five [2%] in the saline group; RR 1·21 [95% CI 0·37–3·91], p=0·771) was similar. Interpretation: In patients with intraventricular haemorrhage and a routine extraventricular drain, irrigation with alteplase did not substantially improve functional outcomes at the mRS 3 cutoff compared with irrigation with saline. Protocol-based use of alteplase with extraventricular drain seems safe. Future investigation is needed to determine whether a greater frequency of complete intraventricular haemorrhage removal via alteplase produces gains in functional status

    Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial

    Get PDF
    Acute stroke due to supratentorial intracerebral haemorrhage is associated with high morbidity and mortality. Open craniotomy haematoma evacuation has not been found to have any benefit in large randomised trials. We assessed whether minimally invasive catheter evacuation followed by thrombolysis (MISTIE), with the aim of decreasing clot size to 15 mL or less, would improve functional outcome in patients with intracerebral haemorrhage. MISTIE III was an open-label, blinded endpoint, phase 3 trial done at 78 hospitals in the USA, Canada, Europe, Australia, and Asia. We enrolled patients aged 18 years or older with spontaneous, non-traumatic, supratentorial intracerebral haemorrhage of 30 mL or more. We used a computer-generated number sequence with a block size of four or six to centrally randomise patients to image-guided MISTIE treatment (1·0 mg alteplase every 8 h for up to nine doses) or standard medical care. Primary outcome was good functional outcome, defined as the proportion of patients who achieved a modified Rankin Scale (mRS) score of 0-3 at 365 days, adjusted for group differences in prespecified baseline covariates (stability intracerebral haemorrhage size, age, Glasgow Coma Scale, stability intraventricular haemorrhage size, and clot location). Analysis of the primary efficacy outcome was done in the modified intention-to-treat (mITT) population, which included all eligible, randomly assigned patients who were exposed to treatment. All randomly assigned patients were included in the safety analysis. This study is registered with ClinicalTrials.gov, number NCT01827046. Between Dec 30, 2013, and Aug 15, 2017, 506 patients were randomly allocated: 255 (50%) to the MISTIE group and 251 (50%) to standard medical care. 499 patients (n=250 in the MISTIE group; n=249 in the standard medical care group) received treatment and were included in the mITT analysis set. The mITT primary adjusted efficacy analysis estimated that 45% of patients in the MISTIE group and 41% patients in the standard medical care group had achieved an mRS score of 0-3 at 365 days (adjusted risk difference 4% [95% CI -4 to 12]; p=0·33). Sensitivity analyses of 365-day mRS using generalised ordered logistic regression models adjusted for baseline variables showed that the estimated odds ratios comparing MISTIE with standard medical care for mRS scores higher than 5 versus 5 or less, higher than 4 versus 4 or less, higher than 3 versus 3 or less, and higher than 2 versus 2 or less were 0·60 (p=0·03), 0·84 (p=0·42), 0·87 (p=0·49), and 0·82 (p=0·44), respectively. At 7 days, two (1%) of 255 patients in the MISTIE group and ten (4%) of 251 patients in the standard medical care group had died (p=0·02) and at 30 days, 24 (9%) patients in the MISTIE group and 37 (15%) patients in the standard medical care group had died (p=0·07). The number of patients with symptomatic bleeding and brain bacterial infections was similar between the MISTIE and standard medical care groups (six [2%] of 255 patients vs three [1%] of 251 patients; p=0·33 for symptomatic bleeding; two [1%] of 255 patients vs 0 [0%] of 251 patients; p=0·16 for brain bacterial infections). At 30 days, 76 (30%) of 255 patients in the MISTIE group and 84 (33%) of 251 patients in the standard medical care group had one or more serious adverse event, and the difference in number of serious adverse events between the groups was statistically significant (p=0·012). For moderate to large intracerebral haemorrhage, MISTIE did not improve the proportion of patients who achieved a good response 365 days after intracerebral haemorrhage. The procedure was safely adopted by our sample of surgeons. National Institute of Neurological Disorders and Stroke and Genentech. [Abstract copyright: Copyright © 2019 Elsevier Ltd. All rights reserved.

    EFSA Panel on Biological Hazards (BIOHAZ) Panel; Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 1 (outbreak data analysis and risk ranking of food/pathogen combinations)

    Get PDF
    Food of non-animal origin (FoNAO) is consumed in a variety of forms, and a major component of almost all meals. These food types have the potential to be associated with large outbreaks as seen in 2011 associated with VTEC O104. A comparison of the incidence of human cases linked to consumption of FoNAO and of food of animal origin (FoAO) was carried out to provide an indication of the proportionality between these two groups of foods. It was concluded that outbreak data reported as part of EU Zoonoses Monitoring is currently the only option for EU-wide comparative estimates. Using this data from 2007 to 2011, FoNAO were associated with 10% of the outbreaks, 26% of the cases, 35% of the hospitalisations and 46% of the deaths. If the data from the 2011VTEC O104 outbreak is excluded, FoNAO was associated with 10% of the outbreaks, 18% of cases, but only 8% of the hospitalisations and 5% of the deaths. From 2008 to 2011 there was an increase in the numbers of reported outbreaks, cases, hospitalisations and deaths associated with food of non-animal origin. In order to identify and rank specific food/pathogen combinations most often linked to human cases originating from FoNAO in the EU, a model was developed using seven criteria: strength of associations between food and pathogen based on the foodborne outbreak data from EU Zoonoses Monitoring (2007-11), incidence of illness, burden of disease, dose-response relationship, consumption, prevalence of contamination and pathogen growth potential during shelf life. Shortcomings in the approach using outbreak data were discussed. The top ranking food/pathogen combination was Salmonellaspp. and leafy greens eaten raw followed by (in equal rank) Salmonellaspp. and bulb and stem vegetables, Salmonellaspp. and tomatoes, Salmonellaspp. and melons, and pathogenic Escherichia coli and fresh pods, legumes or grain
    corecore