26 research outputs found

    Expectant parents' views of factors influencing infant feeding decisions in the antenatal period: A systematic review

    Get PDF
    Objective: To explore the factors that influence expectant parents’ infant feeding decisions in the antenatal period. Design: Mixed method systematic review focussing on participant views data. Data sources: CINAHL, Medline, Embase and PsychInfo databases were interrogated using initial keywords and then refined terms to elicit relevant studies. Reference lists were checked and hand-searching was undertaken for 2 journals (‘Midwifery’ and ‘Social Science and Medicine’) covering a 3 year time period (January 2011–March 2014). Key inclusion criteria: studies reflecting expectant parents’ views of the factors influencing their infant feeding decisions in the antenatal period; Studies in the English language published after 1990, from developed countries and of qualitative, quantitative or mixed method design. Review methods: A narrative interpretive synthesis of the views data from studies of qualitative, quantitative and mixed method design. Data were extracted on study characteristics and parents’ views, using the Social Ecological Model to support data extraction and thematic synthesis. Synthesis was influenced by the Evidence for Policy and Practice Information and Co-Ordinating Centre approach to mixed method reviews. Results: Of the 409 studies identified through search methods, 17 studies met the inclusion criteria for the review. Thematic synthesis identified 9 themes: Bonding/Attachment; Body Image; Self Esteem/Confidence; Female Role Models; Family and Support Network; Lifestyle; Formal Information Sources; Knowledge; and Feeding in front of others/Public. The review identified a significant bias in the data towards negative factors relating to the breastfeeding decision, suggesting that infant feeding was not a choice between two feeding options, but rather a process of weighing reasons for and against breastfeeding. Findings reflected the perception of the maternal role as intrinsic to the expectant mothers’ infant feeding decisions. Cultural perceptions permeated personal, familial and social influences on the decision-making process. Expectant mothers were sensitive to the way professionals attempted to support and inform them about infant feeding choices. Conclusions: By taking a Social Ecological perspective, we were able to explore and demonstrate the multiple influences impacting on expectant parents in the decision-making process. A better understanding of expectant parents’ views and experiences in making infant feeding decisions in the prenatal and antenatal periods will inform public health policy and the coordination of service provision to support infant feeding activities

    Correction for Johansson et al., An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    Correction for “An open challenge to advance probabilistic forecasting for dengue epidemics,” by Michael A. Johansson, Karyn M. Apfeldorf, Scott Dobson, Jason Devita, Anna L. Buczak, Benjamin Baugher, Linda J. Moniz, Thomas Bagley, Steven M. Babin, Erhan Guven, Teresa K. Yamana, Jeffrey Shaman, Terry Moschou, Nick Lothian, Aaron Lane, Grant Osborne, Gao Jiang, Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, Roni Rosenfeld, Justin Lessler, Nicholas G. Reich, Derek A. T. Cummings, Stephen A. Lauer, Sean M. Moore, Hannah E. Clapham, Rachel Lowe, Trevor C. Bailey, Markel García-Díez, Marilia Sá Carvalho, Xavier Rodó, Tridip Sardar, Richard Paul, Evan L. Ray, Krzysztof Sakrejda, Alexandria C. Brown, Xi Meng, Osonde Osoba, Raffaele Vardavas, David Manheim, Melinda Moore, Dhananjai M. Rao, Travis C. Porco, Sarah Ackley, Fengchen Liu, Lee Worden, Matteo Convertino, Yang Liu, Abraham Reddy, Eloy Ortiz, Jorge Rivero, Humberto Brito, Alicia Juarrero, Leah R. Johnson, Robert B. Gramacy, Jeremy M. Cohen, Erin A. Mordecai, Courtney C. Murdock, Jason R. Rohr, Sadie J. Ryan, Anna M. Stewart-Ibarra, Daniel P. Weikel, Antarpreet Jutla, Rakibul Khan, Marissa Poultney, Rita R. Colwell, Brenda Rivera-García, Christopher M. Barker, Jesse E. Bell, Matthew Biggerstaff, David Swerdlow, Luis Mier-y-Teran-Romero, Brett M. Forshey, Juli Trtanj, Jason Asher, Matt Clay, Harold S. Margolis, Andrew M. Hebbeler, Dylan George, and Jean-Paul Chretien, which was first published November 11, 2019; 10.1073/pnas.1909865116. The authors note that the affiliation for Xavier Rodó should instead appear as Catalan Institution for Research and Advanced Studies (ICREA) and Climate and Health Program, Barcelona Institute for Global Health (ISGlobal). The corrected author and affiliation lines appear below. The online version has been corrected

    Simultaneous pharmacokinetic and pharmacodynamic analysis of 5α-reductase inhibitors and androgens by liquid chromatography tandem mass spectrometry

    Get PDF
    AbstractBenign prostatic hyperplasia and prostate cancer can be treated with the 5α-reductase inhibitors, finasteride and dutasteride, when pharmacodynamic biomarkers are useful in assessing response. A novel method was developed to measure the substrates and products of 5α-reductases (testosterone, 5α-dihydrotestosterone (DHT), androstenedione) and finasteride and dutasteride simultaneously by liquid chromatography tandem mass spectrometry, using an ABSciex QTRAP® 5500, with a Waters Acquity™ UPLC. Analytes were extracted from serum (500µL) via solid-phase extraction (Oasis® HLB), with 13C3-labelled androgens and d9-finasteride included as internal standards. Analytes were separated on a Kinetex C18 column (150×3mm, 2.6µm), using a gradient run of 19min. Temporal resolution of analytes from naturally occurring isomers and mass +2 isotopomers was ensured. Protonated molecular ions were detected in atmospheric pressure chemical ionisation mode and source conditions optimised for DHT, the least abundant analyte. Multiple reaction monitoring was performed as follows: testosterone (m/z 289→97), DHT (m/z 291→255), androstenedione (m/z 287→97), dutasteride (m/z 529→461), finasteride (m/z 373→317). Validation parameters (intra- and inter-assay precision and accuracy, linearity, limits of quantitation) were within acceptable ranges and biological extracts were stable for 28 days. Finally the method was employed in men treated with finasteride or dutasteride; levels of DHT were lowered by both drugs and furthermore the substrate concentrations increased

    An open challenge to advance probabilistic forecasting for dengue epidemics

    Get PDF
    This is the final version. Available on open access from the National Academy of Sciences via the DOI in this recordData Availability: Data deposition: The data are available at https://github.com/cdcepi/dengue-forecasting-project-2015 (DOI: https://doi.org/10.5281/zenodo.3519270).A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue

    An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue

    SHM-based decision support system for bridge scour management

    Get PDF
    Scour is the leading cause of bridge failures worldwide. In the United States, 22 bridges fail every year, whereas in the UK scour contributed significantly to the 138 bridge collapses recorded in the last century. Monitoring an entire infrastructure network against scour is not economically feasible. This limitation can be overcome by installing monitoring systems at critical locations, and then extend the pieces of information gained to the entire asset through a probabilistic approach. This paper proposes a Decision Support System (DSS) for bridge scour management that exploits information from a limited number of scour monitoring systems (SMSs) to achieve a more confined estimate of the scour risk for a bridge network. A Bayesian network (BN) is used to describe conditional dependencies among the involved random variables, and it allows estimating the scour depth distributions using information from monitoring of scour depth and river flow characteristics. Data collected by SMSs and BN’s outcomes are then used to inform a decision model and thus support transport agencies’ decision frameworks. A case study consisting of several road bridges in Scotland is considered to demonstrate the functioning of the DSS. The BN is found to estimate accurately the scour depth at unmonitored bridges, and the decision model provides higher values of scour thresholds compared to the ones implicitly chosen by the transport agencies

    A Decision Support System for Scour Management of Road and Railway Bridges Based on Bayesian Networks

    No full text
    Flood-induced scour is the excavation of material around bridge foundations due to the erosive action of flowing water and it is by far the leading cause of bridge failures worldwide. In the United States, scour is the cause of 22 bridges fail every year whereas in the UK, it contributed significantly to the 138 collapses of bridges in the last century. Monitoring an entire infrastructure network against scour is not economically feasible. A way to overcome this limitation is to install scour monitoring systems (SMSs) at critical bridge locations, and then extend information gained to the entire asset through a probabilistic approach. In this paper, we propose a Decision Support System (DSS) for road and railway bridge scour management that exploits information from a limited number of scour monitoring systems to achieve a more confined estimate of the scour risk for a bridge network. A Bayesian network (BN) is used to describe conditional dependencies among the random variables involved. It allows estimating the present and future scour depth distribution using real-time information from monitoring of scour depth and river flow characteristics. Data collected by SMSs and BN’s outcomes are then used to inform a decision model and thus support transport agencies’ decision frameworks. The idea is to use this information to update the scour threshold after which bridges are closed. A case study consisting of several road bridges in Scotland is built to demonstrate the functioning of the DDS. They cross the same river and only one of them is instrumented with a SMS. The BN is found to estimate accurately the scour depth at unmonitored bridges and the decision model provides higher values of scour threshold compared to the ones implicitly chosen by transport agencies
    corecore