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a b s t r a c t

Benign prostatic hyperplasia and prostate cancer can be treated with the 5α-reductase inhibitors,
finasteride and dutasteride, when pharmacodynamic biomarkers are useful in assessing response. A
novel method was developed to measure the substrates and products of 5α-reductases (testosterone,
5α-dihydrotestosterone (DHT), androstenedione) and finasteride and dutasteride simultaneously by
liquid chromatography tandem mass spectrometry, using an ABSciex QTRAPs 5500, with a Waters
Acquity™ UPLC. Analytes were extracted from serum (500 mL) via solid-phase extraction (Oasiss HLB),
with 13C3-labelled androgens and d9-finasteride included as internal standards. Analytes were separated
on a Kinetex C18 column (150�3 mm, 2.6 mm), using a gradient run of 19 min. Temporal resolution of
analytes from naturally occurring isomers and mass þ2 isotopomers was ensured. Protonated molecular
ions were detected in atmospheric pressure chemical ionisation mode and source conditions optimised
for DHT, the least abundant analyte. Multiple reaction monitoring was performed as follows:
testosterone (m/z 289-97), DHT (m/z 291-255), androstenedione (m/z 287-97), dutasteride (m/z
529-461), finasteride (m/z 373-317). Validation parameters (intra- and inter-assay precision and
accuracy, linearity, limits of quantitation) were within acceptable ranges and biological extracts were
stable for 28 days. Finally the method was employed in men treated with finasteride or dutasteride;
levels of DHT were lowered by both drugs and furthermore the substrate concentrations increased.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Finasteride and dutasteride, are irreversible inhibitors of
5α-reductase isozyme(s) [1]. They were developed to decrease
the conversion of testosterone to its more potent metabolite

5α-dihydrotestosterone (DHT) (Fig. 1) in the treatment of benign
prostatic hyperplasia (BPH) and are now being proposed for use in
prostate cancer [2]. In its early stages, prostate cancer is androgen-
responsive and androgen ablation therapy is effective in restrain-
ing tumour growth [3]. As the disease advances, the tumour
becomes “castration resistant”, with changes in the responsiveness
of the androgen receptor (AR) and in its associated signalling
pathways. Under these circumstances, local androgen synthesis
inhibitors, such as 5α-reductase inhibitors, may be used to further
lower levels of any remaining intra-tumoural androgen [4], often
derived from adrenal sources. In many therapeutic settings where
5α-reductase inhibitors are used or studied, the simultaneous
assessment of pharmacodynamics and pharmacokinetics is desir-
able, and best achieved by measurement of steroid concentrations
and drug concentrations respectively.
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Finasteride, the first drug in class, is selective for 5α-reductase
type 2 [5], exerting its effects most markedly in the prostate.
Dutasteride is a “dual” 5α-reductase type 1 and 2 inhibitor [6],
developed to lower the levels of DHT further, achieving �94%
reduction in DHT compared with �70–80% suppression by finas-
teride [7–10]. However, by inhibiting 5α-reductase 1, it has the
potential to influence the hormonal milieu in a wider array of
tissues [11], notably the liver. 5α-Reductases metabolise not only
androgens but also glucocorticoids, mineralocorticoids and pro-
gestogens. Therefore, inhibitors of 5α-reductase isozymes, and in
particular of type 1 5α-reductase may have effects on diverse
steroid hormone signalling pathways. Recent studies suggest that
inhibition of 5α-reductase type 1 in liver may adversely influence
insulin sensitivity [12], predispose to fatty liver [13] and also alter
stress responses [14].

Pharmacodynamic and pharmacokinetic studies of 5α-
reductases are achieved by measurement of the androgenic sub-
strate and product, together with circulating drug concentrations.
Such measures also permit assessment of treatment adherence in
clinical studies. To minimise sample volume, maximise efficiency
of sample processing, allow analysis without unblinding partici-
pants, and permit simultaneous pharmacodynamic and pharma-
cokinetic evaluation, a single assay measuring both drugs and
androgen concentrations is desirable. Dutasteride [15,16] and
finasteride [17–22] have been quantified previously by liquid
chromatography–mass spectrometry (LC–MS), but only individu-
ally. Testosterone and androstenedione, the principle endogenous
androgenic substrates of 5α-reductase circulate in �1–30 nM
concentrations [23,24], and testosterone is routinely monitored
by LC tandem MS ( LC–MS/MS) in clinical biochemistry
laboratories [25]. However, analysis of DHT presents particular
challenges due to its low concentrations, especially following
5α-reductase inhibition [8] and poor propensity to ionise. The
use of LC tandem MS (LC–MS/MS) has allowed measurement of
DHT in adult [24] and paediatric populations [26], overcoming
the need for derivatisation with GC–MS methods [27,28],
the low sensitivity and lack of mass separation with HPLC methods
with ultraviolet detection [29] and the lack of specificity
with immunoassays [30]. While many approaches to quantify
DHT by LC–MS have also required derivatisation [31–33], this
may not be possible in conjunction with simultaneous analysis of
drug levels.

We developed a novel assay simultaneously measuring inhibi-
tors (finasteride and dutasteride), substrates (testosterone, andros-
tenedione) and product (DHT) of 5α-reductases in human serum.
The approach was evaluated in monitoring pharmacodynamic
responses to 5α-reductase inhibitors in men.

2. Materials and methods

2.1. Reagents and standards

Unless stated otherwise, chemicals (including 2,3,4-[13C3]
labelled androgens) were from Sigma-Aldrich (Dorset, UK) and
all solvents were from Rathburn Chemical Ltd (Walkerburn, UK).
Water and formic acid (FA) were from Fisher Scientific (Loughbor-
ough, UK). Methanol (HPLC gradient grade) was from VWR
(Lutterworth, Leicestershire, UK). Finasteride was from Steraloids
(Newport, RI, USA) and dutasteride from AK Scientific (Mountain
View, CA, USA). 23,23,23,24,24,24,25,25,25[2H9]-finasteride (d9-
finasteride) was synthesised in-house [34]. Stock solutions were
prepared at 1 and 0.01 mg/mL in methanol, and stored at �20 1C.
Working solutions were prepared on the day of analysis.

2.2. Biological samples

Pooled male human serum and steroid-stripped serum for the
method of optimisation and validation were from TCS Biosciences
(Buckingham, UK). Due to residual androstenedione and testoster-
one being detectable in the steroid-stripped serum, it was re-
stripped before use. Dextran-coated charcoal was added to
steroid-stripped serum (0.1 g/10 mL), stirred (�24 h, 4 1C) and
removed by centrifugation (1811g, 4 1C, 30 min). Stripped serum
was sequentially filtered through 1.20 mm (Sartorius minisart,
Sartorius AG, Göttingen, Germany) and 0.22 mm filters (Millexs

GP filter unit, Millipore Ireland Ltd., Carrigtwohill, Ireland) until
clear and aliquots frozen (�20 1C) until use.

2.3. LC–MS/MS instrumentation and MS tuning

Chromatographic separation was performed on a Waters
Acquity™ UPLC (Manchester, UK) with autosampler, and detection
on an ABSciex QTRAPs 5500 mass spectrometer (Warrington,
UK), operated with Analysts Software version 1.5.1. Nitrogen was
the source, curtain and collision gas. Compound specific tuning
(collision energy, cell exit potential and declustering potential) in
positive atmospheric pressure chemical ionisation (APCI) mode
was performed using methanolic solutions of steroids, internal
standards and drugs. The masses of precursor ions were deter-
mined and transitions yielding the most abundant product ions
selected from the eight most abundant transitions screened. MS
source conditions were then optimised for DHT, the least abundant
analyte; final optimised conditions were curtain gas 25 psi, colli-
sion gas low, spray voltage 5 kV, nebuliser current 3.5 mA, source
temperature 500 1C, and ion source gas 55 psi.

2.4. Extraction and chromatographic method

Samples were extracted via solid-phase extraction (Oasiss
HLB, 30 μm, 30 mg (Waters, Elstree, UK)). Extraction cartridges
were primed with methanol (1 mL) then water (1 mL). Samples
(500 mL), enriched with internal standard (1 ng), were mixed with
water (500 mL) and loaded onto primed extraction cartridges. After
a wash step (50% methanol in water, 1 mL), analytes were eluted
with methanol (1 mL). Eluates were dried under oxygen-free
nitrogen (37 1C) and reconstituted in mobile phase (30:70 metha-
nol:waterþ0.1% FA; 100 mL). Injection volume was 10 mL.

Analytes were eluted at 35 1C from a Kinetex C18 column
(150�3 mm, 2.6 mm, Phenomenexs, Macclesfield, UK) with
a 1 min hold followed by a 9 min linear gradient from 30:70
to 80:20 (methanol:water with 0.1% FA) at a flow rate of
250 mL/min. Conditions were sustained until 16 min followed by
re-equilibration.
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Fig. 1. Reactions catalysed by 5α-reductases 1 and 2. 5α-Reductases catalyse the
irreversible reduction of the 4-5 double bond in the A-ring, e.g. of testosterone and
androstenedione.
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3. Assay validation

3.1. Recovery

Recovery was calculated by expressing the mean of the inte-
grated peak areas from extracted standards as a percentage of that
of unextracted standards. This was performed in replicates of
6 using stripped serum as matrix and enriched with androstene-
dione (1 ng), testosterone (1 ng), DHT (10 ng), finasteride (1 ng)
and dutasteride (10 ng).

3.2. Ion suppression by serum

The effect of the biological matrix (human serum) on ionisation
efficiency was assessed in replicates of 6 by post-spiking extracted
blank serum with all analytes in amounts corresponding to the
midpoint of the standard curve (indicated by n), and responses
compared with those of standards with the same amounts of
analytes dissolved in mobile phase (30:70 methanol:water þ0.1%
FA). Blank serum sample were also analysed so amounts of
endogenous analytes could be subtracted from peak areas
detected in post-spiked samples.

3.3. Analyte specificity

Extracts of blank stripped and unstripped serumwere analysed
and checked for interferences at or close to the expected retention
times for androgens and drugs and internal standards respectively.
Chromatographic resolution was ensured between anticipated
endogenous stereo or positional isomers, e.g., testosterone, epi-
testosterone and dehydroepiandrosterone (DHEA), and also
between endogenous hormones and predicted mass þ2 isotopo-
meric interferents, e.g., mass þ2 testosterone and DHT. Ratios of
quantifier and qualifier mass transitions were monitored for
analytes all except DHT, where the ion generated by the qualifier
transition was not detected in serum. Quantifier:qualifier ratios in
biological samples were considered acceptable if within 20% of the
mean ratio of standards.

3.4. Limits of detection (LOD) and lower limits
of quantitation (LLOQ)

LOD were determined by analysing solutions prepared by serial
dilution of analyte and internal standard stock solutions, with the
LOD assigned to a peak area where signal:noise ratio (SNR) was
E3. LLOQ following extraction was determined by extracting
analyte and internal standard from serum at amounts correspond-
ing to 0.2� LOD, 0.5� LOD, LOD and 5/3� LOD. The LLOQ was
defined as the amount where relative standard deviation in
replicates of 6 was r20%.

3.5. Linearity

Two standard curves were generated, one in water (for quanti-
tation of androgens) and one in serum (for quantitation of
dutasteride and finasteride), with 1 ng of each internal standard.
Standard curves represented concentration ranges: testosterone
(1, 2#, 3, 5, 7.5,#, 10n, 12.5, 15# ng/mL), androstenedione and DHT
(0.1, 0.2#, 0.5, 1, 2n,#, 3, 4, 5# ng/mL), finasteride and dutasteride (1,
2#, 5, 10, 25n,#, 50, 75, 100# ng/mL); n used to assess ion suppres-
sion, # used to assess accuracy and precision. Peak areas of each
analyte and internal standard were integrated and a calibration
curve constructed (peak area ratio of analyte/internal standard
versus concentration of analyte). Regression lines of best fit were
constructed and considered acceptable if the regression

coefficient, r, was 40.99. Accuracy was compared using different
weightings (none, 1/x and 1/x2).

3.6. Precision and accuracy

The intra-assay accuracy and precision were determined with
3 points of the standard curve prepared in replicates of 6 (low,
medium, high, indicated by # above). Precision was also deter-
mined using 6 replicates of a patient sample. The inter-assay
accuracy and precision were determined from four standard
curves prepared on different days. The precision was calculated
as the relative standard deviation of the mean (RSD) with RSD
(%)¼standard deviation/mean�100. The % accuracy was calcu-
lated as the calculated concentration/ theoretical con-
centration�100. Injector variability was assessed by injecting (6
times) the midpoint standards (medium) of the calibration curve,
and a pooled male serum sample enriched with both finasteride
(10 ng/mL) and dutasteride (20 ng/mL).

3.7. Stability

Stability was assessed by reinjection of a single calibration
curve and patient sample after 24 h in the auto-sampler (10 1C)
and following 28 day storage (�20 1C). Acceptable storage condi-
tions were those giving r10% change in response.

3.8. Method exemplification

Drugs and steroids were quantified in serum collected from
male subjects (age 20–85 years, n¼16/group) prior to and follow-
ing 90 days of treatment once daily with either dutasteride
(0.5 mg, Glaxo Smith Kline Pharmaceuticals, Poznań, Poland) or
finasteride (5 mg; Gedeon Richter, Budapest, Hungary). Local
ethical committee approval and informed consent were obtained.

3.9. Data analysis

Assay validation data are presented as mean (RSD) and biolo-
gical concentrations as mean7standard error of the mean. Effects
of drugs on concentrations of substrates and product of 5α-
reductases were tested by repeated measure ANOVAs with Fisher's
post-hoc tests and associations tested by Pearson Correlation.
Where appropriate, data below the limits of quantitation were
imputed as 0.5xLLOQ for statistical tests.

4. Results and discussion

4.1. Mass spectrometric conditions and fragmentation of analytes

All analytes and internal standards in solution ionised to form
their protonated molecular ions in both positive electrospray (ESI)
and APCI modes (Table 1). Although others have previously used
ESI [24], APCI was selected due to less ion suppression during
steroid analysis in the biomatrix. Signal responses in post-spiked
serum compared to unextracted serum were androstenedione
110.8% (1.7%), testosterone 115.3% (2.1%), DHT 109.2% (2.4%),
finasteride 111.0% (0.9%), dutasteride 97.2% (3.0%). APCI typically
suffers less from ion suppression due to reduced ionisation of
phospholipids and other competing compounds [35].

Androgens fragmented as previously reported [24] to yield
product ions incorporating the A-ring of the steroid [36] and the
presence of the three 13C atoms was evident in the product ions of
their internal standards. Finasteride, d9-finasteride and dutaste-
ride fragmented as reported previously [15,34]. It was important to
enhance the signal for DHT, the least abundant analyte with
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poorest ionisation efficiency, hence source conditions were opti-
mised for this analyte. Quantifier and qualifier transitions were
defined for each analyte and internal standard (Table 1); however,
in the case of DHT the signal from the potential qualifier ion (m/z
291-91) was not detectable in the biological matrix. The 3α, 5α-
reduced product formed from androstenedione was included in
initial screening but was not pursued into full validation. This
steroid generated ions with similar intensity to DHT but, due to
lower substrate concentrations, this product was present in con-
centrations which could not be readily detected in 500 μL
of serum.

4.2. Selection of internal standards

13C labelled internal standards of androgens were selected,
since some deuterium labelled steroids proved unsuitable due to
variable loss of stable-isotopes during sample processing or
ionisation, and isotopomers labelled in the D-ring did not retain
deuterium in the product ion. Loss of deuteriums (particularly
when attached to the steroid A-ring), has been described by others
[37–39]. 13C3-Androstenedione, 13C3-testosterone and 13C3-DHT
proved suitable for robust quantitation as described further,
subject to chromatographic resolution. For example, the mass
þ1 isotopomer of 13C3-androstenedione could interfere with
quantitation of DHT.

We have previously reported the synthesis of d9-finasteride
[34] and others have used d3-finasteride as the internal standard
for gas chromatography–MS [40]. In all other reports of finasteride
and dutasteride analysis, non-deuterated internal standards were
used, with finasteride often used as the internal standard for
dutasteride [15,16], and other compounds used for finasteride
quantitation [18–20,29]. d9-Finasteride had sufficient structural
similarity to both 5α-reductase inhibitors for robust analysis of
either drug, however synthesis of deuterated dutasteride in future
may offer added benefits for precision and accuracy.

4.3. Chromatographic conditions

The potential for interference between endogenous positional
isomers (testosterone and DHEA), stereoisomers (testosterone and
its 17α-epimer) and also isobaric isotopomers from naturally
occurring 13C2 isotopomers was noted, requiring selective chro-
matographic approaches. This combined approach had not been
achieved previously for steroids and drugs. Reported methods for
detection of individual analytes predominantly use C18 columns,
though these varied in length from 50 mm [15–17] to 150 mm
[19,20]. Attempts with alternative stationary phases were not

successful with all analytes. Although finasteride could be effi-
ciently eluted with the steroids, combined analysis with dutaste-
ride proved more challenging. Adequate peak resolution was seen
with most analytes of interest using a pentafluorophenyl column,
however dutasteride was not detected; with 6 fluorine atoms and
an aromatic unit in the molecule, dutasteride may have a much
greater affinity for the column, though π–π interactions. Greatest
peak intensities for all analytes were found with a Kinetex C18
column, a porous shell column, and acceptable peak resolution
with column length of 150 mm.

Acetonitrile has often been selected as the organic component
of the mobile for analysis of dutasteride and finasteride [18–20],
and methanol for androgens [24,41]. However, acetonitrile sup-
pressed ionisation of all analytes and hence methanol was
selected. Ionisation was improved when formic acid was added
as a modifier, with 0.1% yielding maximum responses, while still
retaining consistency in chromatographic separation. We did not
observe the improvements in analysis of testosterone, androste-
nedione and finasteride reported previously following buffering
formic acid with ammonium acetate [17,42]. The duration of the
gradient was optimised, being the key component allowing
optimal baseline separation (particularly of testosterone and epi-
testosterone), ultimately requiring a 19 min run. Extension of the
isocratic time after the initial gradient was important to maintain
peak symmetry of DHT.

4.4. Extraction

Extraction was optimised to maximise recovery of endogenous
DHT from serum, while extracting both androgens and 5α-reduc-
tase inhibitors. DHT and dutasteride proved the most challenging
analytes.

Based on previously published reports, we evaluated a series of
liquid-liquid extractions employing ethyl acetate:hexane (3:2, v/v,
with and without NaOH (0.1 M)) and ethyl acetate (with and
without saturated NaCl) with samples tested neat, mixed with
water, acidified (mixed with 0.1% FA) or alkaline (mixed with 5%
ammonia). Despite good recovery of testosterone and androste-
nedione, these approaches did not recover endogenous DHT or the
5α-reductase inhibitors efficiently. In supported liquid extractions,
pre-extraction mixing was tested with FA (1%, 0.1%), water, NH4OH
(0.1 M), and acetic acid (0.1%), and extracting solvents tested were
dichloromethane, diethyl ether, ethyl acetate, hexane, methanol
and acetonitrile. Supported liquid-liquid extractions proved highly
variable for steroid analysis, and recoveries achieved for 5α-
reductase inhibitors were inadequate. Protein precipitation and
phospholipid crash methods gave poorer recoveries and again

Table 1
Mass spectral conditions for analysis of analytes and internal standards utilising atmospheric pressure chemical ionisation.

Mass (amu) Precursor ion
(m/z)

Product ion
Quan; Qual

Declustering
potential (V)

Collision energy (V)
Quan; Qual

Cell exit potential (V)
Quan; Qual

ANALYTES
Androstenedione 286.4 287 97; 109 56 29; 27 18; 12
Testosterone 288.4 289 97; 109 16 27; 31 14; 16
5α-Dihydrotestosteronen 290.4 291 255; n 16 21; n 28; n

Finasteride 372.5 373 317; 305 26 27; 41 14; 28
Dutasteride 528.5 529 461; 264 161 45; 55 48; 32

Internal Standards
13C3-androstenedione 289.4 290 100; 112 31 27; 39 12; 16
13C3-testosterone 291.4 292 100; 112 1 27; 35 4; 8
13C3-

dihydrotestosteronen
293.4 294 258: n 61 21; n 12; n

d9-Finasteride 381.6 382 318; 314 41 33; 41 34; 36

Amu: atomic mass unit; Quan: quantifier ion; Qual: qualifier ion; V: volts. n: Qualifier ion not detected in biological matrix.
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endogenous DHT was not detected. Solid-phase extraction had
been used previously in separate assays for 5α-reductase inhibitors
[15,18] and androgens [26,43] and the reversed-phase polymeric
sorbent, Oasiss Hydrophilic Lipophilic Balanced (HLB), was ulti-
mately selected. This technology also allowed transfer to 96-well
plate format, suitable for high-throughput processing.

Mixing serum with water prior to extraction yielded the best
extraction efficiency and the composition of the wash step proved
vital to decrease background noise in the DHT transition. When
using only 5% methanol in the wash step, several large peaks
eluted close to the retention time of DHT; these could be
eliminated by washing with 50% methanol in water, followed by
elution in methanol (Fig. 2A and B). Using the final methods,
extraction efficiencies all exceeded 80%: androstenedione 88.7%
(15.4%); testosterone 84.6% (13.4%); DHT 85.5% (14.7%); finasteride
89.6% (14.3%); dutasteride 94.5% (10.4%).

5. Assay validation

5.1. Analyte specificity

All analytes and internal standards were temporally resolved
from potential isomeric and isobaric interferences. Of note, tes-
tosterone and its biologically inert epi-isomer, epitestosterone,
were separated chromatographically (Fig. 2C). The highly abun-
dant isobaric steroid DHEA was not detected in the mass transi-
tions (both quantifier and qualifier) monitored for testosterone. At
amounts used, internal standards did not give any detectable
interference in the analyte transitions.

An additional consideration was the potential presence of
metabolites of 5α-reductase inhibitor drug in serum. As well as
unchanged drug, dutasteride is known to have 3 major (40-
hydroxydutasteride, 1,2-dihydrodutasteride, and 6-hydroxydu-
tasteride) and 2 minor (6,40-dihydroxydutasteride and 15-hydro-
xydutasteride) metabolites detected in human serum following
dosing to steady state [44]. Finasteride has two main in vivo
metabolites detected in serum [45]. With different molecular
weights to their parent drug, metabolites of both finasteride and
dutasteride would be anticipated to give rise to different precursor
ions and mass transitions and hence not be detected in the
current assay.

5.2. LOD and LLOQ

Analyte limits of detection and lower limits of quantitation
(Table 2) permitted analysis of anticipated concentrations of
analytes in serum and were similar to those of Kulle et al. [26]
for testosterone and androstenedione, although slightly poorer for
DHT. The anticipated reference ranges for expected concentrations
in serum in adult men are: androstenedione 0.23–2.41 ng/mL
[23,46], testosterone 2.65–9.71 ng/mL and DHT 0.14–0.77 ng/mL
[24], finasteride 1.8–49 ng/mL [45] and dutasteride 36 ng/mL [44].
Notably finasteride and dutasteride could be quantified accurately
even in amounts with signal:noise r3 (defined as the LOD). These
limits would permit analysis of most analytes (except DHT) in
volumes as low as 10 μL but to allow the incorporation of DHT,
500 μL of serum was required.

5.3. Linearity

Standard curves were linear in the range required, and for all
analytes mean r was 40.99 (SD between 0.002–0.004). Mean
intercepts (SD) were: androstenedione �0.007 (0.02); testoster-
one 0.084 (0.31); DHT�0.011 (0.02); finasteride 0.044 (0.06);

dutasteride 8.13E�08 (2.42E�07). 1/x weighting was used for all
analytes except DHT, where no weighting was applied.

5.4. Precision and accuracy

Intra- and inter-assay precision and accuracy of analysis are
summarised in Table 3. While acceptable results were obtained
for testosterone and androstenedione across the range of

Fig. 2. Mass chromatograms demonstrating analytical challenges. Representative
mass chromatograms demonstrating improvement in signal to noise in mass
transition (m/z 291-255) representing DHT recovered from normal male serum,
following optimisation of the wash step. (A) Wash step of 5% methanol in water.
(B) Wash step of 50% methanol in water. DHT, dihydrotestosterone; cps, counts
per second. (C) Mass chromatogram (m/z 289-97) demonstrating separation of
endogenous isomers of testosterone. cps, counts per second.

Table 2
Limits of detection and lower limits of quantitation.

Standard curve
range (ng/mL)

LOD (ng/mL) LLOQ (ng/mL)

Androstenedione 0.1–5 0.08 0.125
Testosterone 1–15 0.003 0.005
5α-Dihydrotestosterone 0.1–5 0.13 0.21
Finasteride 1–100 0.02 0.003
Dutasteride 1–100 0.2 0.1

Abbreviations: LOD: limits of detection, LLOQ: lower limits of quantitation.
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concentrations tested, increasing inter-assay variability in DHT
analysis was observed at low values, close to the LLOQ. In the case
of finasteride and dutasteride, acceptable intra- and inter-assay
precision and accuracy were demonstrated across the range of
concentrations anticipated in clinical studies (Table 3), although in
future stable-isotope labelled dutasteride might allow for lowering
of the LLOQ. Acceptable reproducibility upon repeat injections of
standards and samples was demonstrated with relative standard
deviations between 3.1 and 5.9%.

5.5. Stability

Acceptable autosampler and extract storage stability were
demonstrated for a calibration curve and patient samples, as
shown in Table 4, with less than 10% decline during typical
handling conditions.

5.6. Pharmacodynamic assessments in clinical samples

The assay presented was applied to a clinical research study with
male volunteers studied prior to and following three months of
finasteride (5 mg daily) or dutasteride (0.5 mg daily) [12]. Dutaste-
ride and finasteride treatment resulted in a 46.5% and 47.1%
suppression of DHT concentrations respectively (Fig. 3A and B).
This is somewhat less than reported previously [47], but provided a
robust marker of target engagement. The concentrations of dutaste-
ride achieved would be anticipated to inhibit both isozymes of 5α-
reducatse effectively. Relationships were not observed between
amounts of DHT and those of dutasteride or finasteride, possibly
due to maximal inhibition of the enzyme (Fig. 3C and D); doses of
finasteride greater than 5 mg/day do not to achieve an increase in
efficacy [48] and likewise the concentrations achieved of dutaste-
ride were close to the maximal effect demonstrated by Gisleskog
et al. [49]. The reduction in DHT was accompanied by an increase in
the concentrations of the enzyme substrate, testosterone, following
treatment with both finasteride and dutasteride, of a similar
magnitude to previously reported [50]. Androstenedione, a further

substrate also increased significantly following dutasteride treat-
ment, with a strong trend evident with finasteride (p¼0.06).

With pre-treatment concentrations of DHT approximately
0.8 ng/mL, it is anticipated that measurement of suppression of
DHT to �25% of its original value would be possible using this
analytical approach. Levels fell below the LLOQ in more subjects
receiving dutasteride than finasteride. Increased sample or injec-
tion volume, derivatisation or further advances in technology may
allow extension of the pharmacodynamic range measurable.

6. Conclusions

The novel method developed was suitable for simultaneous
measurement of androgens, dutasteride and finasteride from
human serum, despite significant challenges in chromatographic
and extraction method development. The assay requires relatively
little sample volume (500 mL), has a simple extraction method
compatible with a 96-well format, and is able to quantify DHT
without derivatisation, although advances in sensitivity would still
be beneficial and allow quantitation of DHT and androstane-
3α,5α-dione in smaller volumes. Expected concentrations of all

Table 4
Stability upon storage.

Relative response after
24 h in autosampler
(10 1C)

Relative response after
28 days in freezer
(�20 1C)

Androstenedione 102.7% 98.3%
Testosterone 99.7% 101.0%
5α-Dihydrotestosterone 90.0% 97.5%
Finasteride 95.3% 103.4%
Dutasteride 92.0% 92.0%

Relative response for calculated concentrations for all analytes in a single patient
sample after 24 h in the autosampler (10 1C) and after 28 days in the freezer
(�20 1C).

Table 3
Intra-assay and inter-assay precision and accuracy.

Target concentration
(ng/mL)

Intra-assay (n¼6) Inter-assay (n¼4)

Concentration
(ng/mL): mean
(SD)

Precision
(% RSD)

Accuracy
(%)

Concentration
(ng/mL): mean
(SD)

Precision
(% RSD)

Accuracy
(%)

Androstenedione Low (0.2) 0.18 (0.01) 5.4 87.6 0.19 (0.02) 19.3 93.6
Mid (2) 1.65 (0.12) 7.2 101 1.75 (0.16) 8.9 92.3
High (5) 4.22 (0.27) 6.5 98.3 5.01 (0.59) 11.9 103.4
Sample 0.16 (0.02) 9.9 – 0.20 (0.04) 20.1 –

Testosterone Low (2) 1.80 (0.07) 2.8 94.4 1.88 (0.19) 10.0 94.9
Mid (7.5) 6.50 (0.42) 5.8 101 7.29 (0.83) 11.3 100.6
High (15) 14.40 (0.75) 4.9 100 15.28 (0.65) 4.2 103.3
Sample 9.40 (0.61) 6.0 – 4.22 (0.21) 5.0 –

5α-Dihydrotestosterone Low (0.2) 0.17 (0.02) 11.8 87 0.23 (0.04) 15.5 119.5
Mid (2) 1.70 (0.11) 6.4 90 1.83 (0.14) 7.4 100.0
High (5) 4.11 (0.20) 4.9 103 5.00 (0.60) 12.1 105
Sample 1.39 (0.19) 12.8 – 1.13 (0.31) 27.3 –

Finasteride Low (2) 2.18 (0.24) 10 101 1.87 (0.30) 16.2 92.7
Mid (25) 24.68 (1.34) 5.5 104 24.51 (2.08) 8.5 100.9
High (100) 95.69 (6.23) 6.5 101 99.17 (4.35) 4.4 102.3
Sample 8.45 (0.35) 4.1 – 8.96 (0.69) 7.8 –

Dutasteride Low (2) 1.67 (0.37) 22 88.2 1.86 (0.16) 8.8 94.5
Mid (25) 25.07 (2.40) 9.6 110 26.00 (2.60) 10.0 107.4
High (100) 107.51 (16.06) 14.9 108 86.5 (4.40) 5.1 105
Sample 16.25 (1.83) 11.2 – 15.05 (1.26) 8.4 –
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analytes fell within the linear range of the standard curve in
healthy men. The method is able to quantify DHT suppression to
approximately 25% of normal values and can be used detect
enzyme inhibition and compliance with both 5α-redcutase inhi-
bitors. Intra- and inter-day precision and accuracy were acceptable
and stability testing demonstrated the assay to be applicable to
normal laboratory practice.
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