19 research outputs found

    Practical Dynamic Symbolic Execution for JavaScript

    Get PDF

    ExpoSE:practical symbolic execution of standalone JavaScript

    Get PDF

    Sound regular expression semantics for dynamic symbolic execution of JavaScript

    Get PDF
    Existing support for regular expressions in automated test generation or verification tools is lacking. Common aspects of regular expression engines found in mainstream programming languages, such as backreferences or greedy matching, are commonly ignored or imprecisely approximated, leading to poor test coverage or failed proofs. In this paper, we present the first complete strategy to faithfully reason about regular expressions in the context of symbolic execution, focusing on the operators found in JavaScript. We model regular expression operations using string constraints and classical regular expressions and use a refinement scheme to address the problem of matching precedence and greediness. Our survey of over 400,000 JavaScript packages from the NPM software repository shows that one fifth make use of complex regular expressions features. We implemented our model in a dynamic symbolic execution engine for JavaScript and evaluated it on over 1,000 Node.js packages containing regular expressions, demonstrating that the strategy is effective and can increase line coverage of programs by up to 30%Comment: This arXiv version (v4) contains fixes for some typographical errors of the PLDI'19 version (the numbering of indices in Section 4.1 and the example in Section 4.3

    Origin of Ozone NO(x) in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations Over the South Atlantic Basin

    Get PDF
    The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics

    A meteorological overview of the Pacific Exploratory Mission (PEM) Tropics period

    No full text
    Abstract. NASA's Pacific Exploratory Mission-Tropics (PEM-T) experiment investigated the atmospheric hemistry of a large portion of the tropical and subtropical Pacific Basin during August o October 1996. This paper summarizes meteorological conditions over the PEM-T domain. Mean flow patterns during PEM-T are described. Important circulation systems near the surface include subtropical anticyclones, the South Pacific Convergence Zone (SPCZ), the Intertropical Convergence Zone (1TCZ), and middle latitude transient cyclones. The SPCZ and ITCZ are areas of widespread ascent and deep convection; however, there is relatively little light-ning in these oceanic regions. A large area of subsidence isassociated with the subtropical anticy-clone centered near Easter Island. PEM-T occurred during a period of near normal sea surface temperatures. When compared to an 11 year climatology (1986-1996), relatively minor circula-tion anomalies are observed during PEM-T. Some of these circulation anomalies are consistent with much stronger anomalies observed uring previous La Nina events. In general, however, the 1996 PEM-T period appears to be climatologically representative. Meteorological conditions for specific flights from each major operations area are summarized. The vertical distribution of ozone along selected DC-8 flights is described using the DIAL remote sensing system. Thes

    Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California

    No full text
    Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire's impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire. © 2013 Springer Science+Business Media Dordrecht
    corecore