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Abstract

In this thesis we develop a practical and scalable approach for dynamic
symbolic execution (DSE) of JavaScript programs and prove its effective-
ness by implementing ExpoSE, our new DSE engine. ExpoSE uses pro-
gram instrumentation to implement DSE, enabling analysis of both web
applications and Node.js software while also allowing quick support for
the latest JavaScript standards. We detail novel encodings for regular ex-
pressions, objects, and arrays which allow ExpoSE to analyze programs
out of reach of prior work. In particular, we present the first complete
encoding for ES6 regular expressions, including symbolic support for cap-
ture groups and backreferences. We show the effectiveness of our design
through two case studies. In the first study we show that our approach is
able to generate a suite of supplementary conformance tests for JavaScript
standard library methods that further the official JavaScript testing suite
Test262. Test cases are generated through symbolic exploration of poly-
fill implementations and verified with differential testing. In the second
case study we use DSE to automatically deduce what conditions trigger re-
source loading, enabling our new speculative loading approach Oblique, a
proxy which reduces page load times by sending resources before a client
requests them.
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1 Introduction

The JavaScript programming language is widely used. Created as a
scripting language for early websites, it quickly became the only widely
supported language by browsers. Later, the release of Node.js popularised
stand alone JavaScript interpreters, allowing for JavaScript programs to
run outside of the browser. The convenience of using a single language
for frontend and server-side software increased popularity further, with
tools like Node.js now powering many high-profile systems [59].

The monopoly in web browsers and entrance into other domains has
increased the demand for safe and well-tested JavaScript, but many de-
sign choices, such as the permissive type system, make reasoning about
JavaScript challenging. Objects act as maps, without a predefined struc-
ture, which can be mutated after creation and arrays are not required to
be homogenously typed. For example, let x = {}; x.a = "hello"; cre-
ates a new object and then adds a new field, and [1, false, "Hello"]

is a legal array. JavaScript interpreters accept any combination of types
for operands and use type coercion rules to convert them to compatible
types which leads to unintuitive errors with origins that are hard to diag-
nose. For example, 5 + "5" will evaluate to "55", but 5 - "5" evaluates to
0 because adding a string to a number coerces the number to a string, but
subtracting it coerces the string to a number. Coercion rules add complex-
ity when reasoning about programs, since a developer must consider how
types may be coerced at each step.

Dynamic code evaluation also makes a program hard to analyze, since
the entire source code cannot be known prior to execution. In JavaScript,
a program loads dependencies at runtime rather than concatenating them
during compilation. These additions are done using keywords like eval,
and require, or adding a new <script> tag to the DOM when exe-
cuting inside a web browser. Code added at runtime can be generated
dynamically (e.g, eval("alert(\"Hello\")")), or loaded from a dynamic
resource (e.g., require(window.userAgent + ".js")) so we cannot know
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what code a program will run before execution. The unpredictable struc-
ture of programs makes it difficult to reason about programs statically,
since intuition about what code will be loaded by the runtime may be in-
correct.

To add to these issues, laissez-faire attitudes toward quality controls on
package repositories like NPM have led to the language ecosystem becom-
ing a wild-west, with widely used packages containing malware, bugs,
and poorly documented features [96, 60, 134].

The variable quality and the ease with which bugs can be added to pro-
grams motivates the creation of automated analysis tools for JavaScript.
Unfortunately, the complexities of JavaScript make it difficult to analyze
a program statically. A static analysis looks at the program source code
or artefact in order to make decisions about correctness and highlight er-
rors. For a static analysis to be effective, the code which will be loaded
by the program needs to be known, but the dynamic nature of JavaScript
does not allow this. Additionally, type coercions, objects, and arrays make
the number of states in a nontrivial program infeasible for thorough static
analysis.

A dynamic program analysis is not limited by the addition of code at
runtime, and does not need to reason about the entire program to produce
output. In a dynamic analysis, runtime information is used to decide on
program correctness while a program is executed. A version of the pro-
gram is created which includes runtime assertions that fail if a program
is misbehaving. These assertions may be added automatically, such as
bounds or type checks, or manually added by a developer to enforcing
complex rules. Since the code is executed using a standard interpreter, we
know that any reported errors are real. The downside of a dynamic anal-
ysis is that only the control flows exercised are considered, rather than the
entire program, so errors may be overlooked.

3



1 Introduction

Unit testing is one example of dynamic analysis. A developer manu-
ally creates a test case for each distinct behavior of the program that they
wish to test, and includes a set of passing conditions through runtime as-
sertions. These test cases can then be executed by an automated testing
framework to make sure that the program still behaves as expected after
the code has been changed. Unit testing requires that a developer manu-
ally creates a test case for each behaviour they wish to test. Since the cre-
ation of unit tests is a manual process suites often do not test a program
exhaustively.

Program fuzzing is an alternate dynamic analysis approach that allows
for fully automated testing of programs [121]. In a fuzzer a program is
repeatedly re-executed with random inputs in order to trigger runtime
errors. Fuzzing does not require manual test case creation, but the use of
fully random inputs means that errors trigerred by non-trivial interactions
between inputs are often overlooked. Additionally, since test case gener-
ation does not consider control flow when generating new inputs, many
test cases will follow identical execution paths.

Dynamic symbolic execution (DSE) is a dynamic program analysis ap-
proach that removes the burden of manual unit test creation without the
limitations of program fuzzing by exploring unique control flows in a
program automatically. First, some inputs to the program are marked as
symbolic, and all others are fixed. Then, a DSE engine generates a series
of test cases by executing the program concretely, collecting the program
trace during execution and using an SMT solver to discover alternate as-
signments for the symbolic inputs which would have driven the program
through a different control flow. This process is repeated until all inputs
are exhausted or a limit is reached. Unlike fuzzing, DSE does not execute
multiple paths that explore the same control flow. Instead, each new test
case in is guaranteed to execute a unique control flow.
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1.1 The Problem

Dynamic symbolic execution has seen success as a tool for finding com-
mon errors, such as use after free errors in low-level programming lan-
guages, since the straightforward error model for these bugs make DSE
easily applicable. The success in such domains has led to many mature
DSE engines for C such as KLEE [21], and DART [49], or for direct sym-
bolic execution of binaries through tools like Angr [116]. The same engines
could be used to symbolically execute interpreters while they execute a
program, but the complexity of modern interpreters makes it infeasible
to symbolically execute language interpreters usefully [20]. By building
custom DSE engines specific to a language we can leverage type informa-
tion and knowledge of language semantics to improve the performance of
symbolic execution, making engines more practical.

There have been several DSE engines for JavaScript, but these cannot ex-
plore programs written in modern versions of the language. No previous
symbolic execution engine has supported ES6, ES7, symbolic objects, or in-
cluded full support for regular expressions. Additionally, prior work has
often not supported asynchronous events, an essential element for real-
world JavaScript analysis. Given these limitations with the previous state-
of-the-art, we developed ExpoSE, a new DSE engine for JavaScript with a
design focused on practical symbolic execution.

1.1 The Problem

There is a vast amount of JavaScript in the wild but existing testing frame-
works for JavaScript are insufficient when testing real-world applications
written for newer versions of the language. Our goal is to extend dynamic
symbolic execution to current real-world JavaScript so that reliability and
security of JavaScript in the world can be improved. In order to build an
analysis framework that can scale to real JavaScript we need to address
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1 Introduction

the following issues:

• Dynamic Typing: The permissive dynamic type system requires
careful modeling since a direct encoding of type-coercion rules is too
complex for current constraint solvers.

• Strings and Regular Expressions: JavaScript programs make heavy
use of strings and regular expressions, so models for these language
features are required to meaningfully analyze most programs.

• Objects and Arrays: Objects and arrays are widely utilized, either
as inputs to programs and libraries directly or through decoding of
JSON, a common object serialization format. Symbolic support for
objects and arrays is essential, but the lack of strict object schemas
and support for heterogeneous arrays makes encoding challenging.

• Language Compatibility: JavaScript is revised frequently, and the
bulk of current real-world code is now out of reach of previous en-
gines.

• Runtime Code Evaluation: Dependencies cannot be known ahead
of time so a symbolic execution framework must be capable of han-
dling the addition of code during program execution.

• Asynchronous Design: JavaScript programs have an event driven
concurrency model. Here, unfaithful treatment may cause flag er-
rors incorrectly and lingering events may impact the results of future
analysis.

• Multiple Interpreters: There is a large diversity in JavaScript de-
ployments but analysis tools usually focus on a single implementa-
tion, limiting their utility.
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1.2 Example: A Motivating XSS Vulnerability

• Scalability: Dynamic symbolic execution is expensive, since it re-
quires both SMT solving and repeat program execution, but existing
testing frameworks for JavaScript do not scale to take advantage of
available resources.

1.2 Example: A Motivating XSS Vulnerability

We now present the following example to illustrate some complexities of
JavaScript and the challenges faced when building a DSE engine for it.
This website includes a cross-site scripting (XSS) vulnerability when serv-
ing users of the Chrome browser. XSS vulnerabilities are dangerous be-
cause a request can be shaped to execute arbitrary JavaScript on the client.
With an XSS exploit an attacker can turn a link to the legitimate website
into an attack that steals anything served to the user, including login to-
kens. When analyzing this example, our goal is to identify if this potential
XSS exploit is reachable in practice. To discover this automatically, we
must reason about asynchronous events, strings, and regular expressions.
1 <html>

2 <head>

3 <script src="./other-file.js" />

4 <script>

5 function getParameterByName(name) {

6 name = name.replace(/[\[\]]/g, "\\$&");

7 var regex = new RegExp("[?&]"+name+"(=([̂ &#]*)|&|#|$)");

8 var results = regex.exec(window.location.href);

9 if (!results) return null;

10 if (!results[2]) return "";

11 return decodeURIComponent(results[2].replace(/\+/g, " "));

12 }

13 </script>

14 </head>

15 <body>
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1 Introduction

16 ...

17 <script>

18 (function() {

19 setTimeout(() => {

20 var isChrome = /Chrome\/([0-9]+)/.exec(navigator.userAgent);

21 if (isChrome && isChrome[1] == "78" && getParameterByName("chrome_extra"

)) {

22 eval(getParameterByName("chrome_extra"));

23 }

24 }, 0);

25 })();

26 </script>

27 ...

28 </body>

29 </html>

Our program includes a simple XSS vulnerability through an evalua-
tion of a portion of the URL as JavaScript, eval(getParameterByName

("chrome_extra")). Because of this, navigating to website.com?

chrome_extra=alert("aah") would print a message to the screen when
visiting with a vulnerable browser. When analyzing this program, our
goal is to decide if this line can be reached without constraints restricting
"chrome_extra" to ensure it is not malicious.

We start by looking at the conditions required to reach this point in the
code. We first notice that the triggering method is wrapped by setTimeout

(...,0), which schedules a callback for immediate execution. The pur-
pose of immediate timeouts is to execute a block of code to be executed
after initialization by scheduling it immediately in the event loop. In
JavaScript, there is no facility for pre-emptive multitasking. Instead, the
execution of methods is scheduled by an event loop. The event loop is
widely used in real-world software so any automated analysis framework
for JavaScript will need to ensure it is handled correctly.

Next, we take a look at the callback function that will be triggered when
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1.3 An Architecture for Practical Symbolic Execution of JavaScript

the timeout event executes. A regular expression, /Chrome\/([0-9]+)/.
exec(navigator.userAgent), is used to identify if the browser is a Chrome
instance and extract the version number. If the browser is Chrome version
78 then the query string parameter "chrome_extra" is extracted and exe-
cuted as JavaScript. The query parameter is extracted from the query por-
tion of the URL using getParameterByName, which contains another regular
expression to extract the parameter. Regular expressions are string match-
ing tools that test whether a string matches a specified format, and, if it
does, extract relevant portions of it. Regular expressions are heavily used
in JavaScript, appearing in 35% of the packages on NPM (Chapter 4). Un-
like classical regular expressions, which can be expressed as deterministic
finite automaton, regular expressions in JavaScript may be non-regular
due to their support for backreferences.

To detect the vulnerability automatically, our analysis framework will
need to correctly handle the type system, event loop, and also support
strings and regular expressions with capture groups. As such, even in this
simple program, the complexities of JavaScript make automated analysis
challenging. In real-world applications issues are generally non-obvious,
so manual analysis is impractical. With an automated analysis frame-
work obscure bugs and vulnerabilities can be identified automatically and
flagged for developer review.

1.3 An Architecture for Practical Symbolic Execution

of JavaScript

JavaScript implementations are diverse but generally implement the core
specification laid out in the ECMAScript standard [38] while also includ-
ing some implementation specific features. Previous symbolic execution
engines for JavaScript tethered themselves to a single implementation,
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limiting the reach of the engine to a small subset of JavaScript. Addition-
ally many of these engines are closely tied to specific interpreter versions,
limiting their ability to upgrade when newer versions of JavaScript are
released. We aim to solve this with our new architecture for symbolic
execution of JavaScript which separates the analyser into three compo-
nents, a distributor, executor, and solver. To avoid tying engines to specific
JavaScript interpreters we represent symbolic state through a generalized
symbolic core and rewrite programs to use it through program instrumen-
tation. Through this we decouple the symbolic core from the interpreter
specific frontend, which allows an engine to support multiple JavaScript
interpreters using the same symbolic interpreter. Where implementations
differ we can include implementation specific models or custom instru-
mentation rules through the interpreter specific frontend. Additionally,
our architecture can support different language versions without change
to the symbolic core through custom instrumentors. We define a state
transfer mechanism which requires communication only at the start and
end of test case execution. Using this mechanism we can isolate test cases
by executing them in independent processes. The straightforward inter-
face of the transfer mechanism also allows us to execute many test cases
in parallel.

To demonstrate this architecture we develop ExpoSE, the first DSE en-
gine for JavaScript which supports both Node.js and web browser-based
symbolic execution. ExpoSE is a state of the art dynamic symbolic execu-
tion engine for JavaScript with symbolic support for complex data types,
including strings, arrays, and objects. To show that our approach scales to
software in the wild we present two case studies. Through these case stud-
ies, we show that our approach is practical when symbolically executing
real world JavaScript. We also demonstrate that symbolic execution for
JavaScript has novel uses outside of bug finding.
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1.4 Thesis Overview

The contributions in this thesis center around making symbolic execution
more practical for real world JavaScript through a new architecture and
novel encodings for JavaScript regular expressions, arrays, and objects.
We then demonstrate that a symbolic execution engine for JavaScript has
novel uses outside of test case generation. Chapter 2 covers JavaScript,
program analysis, and SMT, the background knowledge required to de-
velop a DSE engine for JavaScript. In the next two chapters, Chapter 3,
and Chapter 4, we describe our architecture for practical symbolic exe-
cution and detail a novel encoding approach for extended regular expres-
sions. The final two chapters, Chapter 5, and Chapter 6, demonstrate that a
practical symbolic execution engine for JavaScript has uses outside of tra-
ditional error checking and demonstrate that our strategy can be applied
to real-world code. In this thesis we present the following contributions:

(C1) An architecture for scalable symbolic execution of JavaScript with a
straightforward interface to add new interpreter frontends and an
interpreter agnostic core. We demonstrate this architecture through
ExpoSE, a DSE engine which can symbolically execute Node.js pro-
grams and web pages (Chapter 3).

(C2) An encoding approach for extended regular expressions where
matching operations are represented through string equality, con-
catenation, and regular constraints, resolving ambiguity through a
CEGAR refinement scheme. We use this to develop the first com-
plete encoding for ES6 regular expressions, a widely used JavaScript
feature (Chapter 4)

(C3) A practical encoding for JavaScript arrays and objects that enables
straightforward symbolic modeling of concrete field lookups and
under-approximate analysis of symbolic field lookups (Chapter 5).

11
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(C4) A method for systematically testing specification conformance of
multiple black-box standard library implementations by symboli-
cally executing white-box implementations and deciding on correct-
ness through differential testing. We use this approach to automati-
cally generate supplementary test cases for Test262 which improves
test coverage and find 17 bugs in mdn-polyfill (Chapter 5).

(C5) A method for finding dynamic dependencies within webpages
through symbolic execution of page-loads with symbolic request
headers. We demonstrate that this approach can be used to improve
resource dependency resolution proxies (Chapter 6).

Digging down further, in Chapter 2 we motivate the creation of dynamic
analysis tools for JavaScript and introduce dynamic symbolic execution
using satisfiability modulo theories, demonstrating how these tools can
explore programs automatically. In Chapter 3, we introduce the overall
architecture of our symbolic execution engine and describe the model-
ing and exploration strategies used. We show that ExpoSE is capable of
analyzing current JavaScript through two experiments, each evaluating
a unique component of the engine. In Chapter 4, we present a novel ap-
proach to represent JavaScript regular expressions in modern SMT solvers.
Here, we formalize an encoding for ES6 regular expressions. Our spec-
ification includes encodings for backreferences, assertions, and capture
groups. In this work, we also address the issue of matching precedence
in regular expressions. This issue arises because the order of matching can
impact behavior in extended regular expressions. In Chapter 5, we use
DSE to generate supplementary conformance tests for the JavaScript stan-
dard library, using several JavaScript implementations of standard library
methods to drive interesting test case generation and differential testing
as an oracle for test case correctness. We use the new test suite to supple-
ment Test262, a JavaScript implementation conformance test suite, finding
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bugs in a popular standard library implementation and improving over-
all coverage. In our second case study, Chapter 6, we use ExpoSE to find
resource dependencies in web applications, enabling a novel constraints
based approach to resource dependency resolution proxying.

1.5 Previously Published Work

Work in this thesis has also appeared in the following works:

1. ExpoSE was first introduced in: Blake Loring, Duncan Mitchell, and
Johannes Kinder. “ExpoSE: Practical Symbolic Execution of Stan-
dalone JavaScript”. In: Proc. Int. SPIN Symp. Model Checking of
Software (SPIN). ACM, 2017, pp. 196–199, a short paper covering the
engine design and an initial support for regular expressions (C1).

2. Our ES6 regular expression encoding was published in: Blake Lor-
ing, Duncan Mitchell, and Johannes Kinder. “Sound Regular Ex-
pression Semantics for Dynamic Symbolic Execution of JavaScript”.
In: Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI 2019. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 425–438 (C2).

3. Our work on web acceleration using DSE will appear in NSDI 2021
(C5).

1.6 Open Source Work

We have published many of the tools developed through this work open-
source, so that they can be inspected and further expanded by interested
parties. These tools are all designed for natural extension, and we hope
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that they will form the foundation of future research and practical DSE
applications.

• ExpoSE: A Dynamic Symbolic Execution engine for JavaScript 1.

• Z3Javascript: A modification of the Z3 symbolic execution engine
which a user can incorporate into Node.js and Electron applications.
This tool comes with automatic support for regular expression en-
coding, including our CEGAR refinement strategy 2.

• A static analysis tool for JavaScript which is capable of quickly scan-
ning NPM packages for feature usage 3.

• A conformance test generator and evaluator for JavaScript standard
library methods, which we used to find bugs in several polyfill pack-
ages 4.

• A resource dependency development tool, which can take a web-
site address and use ExpoSE to automatically which request header
constraints will result in a resource loading 5.

1https://github.com/ExpoSEJS/
2https://github.com/ExpoSEJS/z3javascript
3https://github.com/ExpoSEJS/PLDI-Artifact
4https://github.com/ExpoSEJS/conformance_test_generator/
5https://github.com/ExpoSEJS/ExpoSE/tree/features/browser/
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We begin by discussing JavaScript, focusing on elements of the language
which have inhibited meaningful program analysis in prior work, such as
prototypal inheritance, the dynamic type system, and regular expressions.
Once we have introduced JavaScript, we move onto an introduction to
program analysis and dynamic symbolic execution. Next, we address how
satisfiability modulo theories (SMT) can be used to represent the logic of
a program trace, and how we can use this in program analysis. Finally,
we discuss source code instrumentation and how it can be used to enable
symbolic execution.

2.1 The JavaScript Programming Language

To understand why JavaScript analysis is challenging, we first take a close
look at the language. JavaScript’s original use-case, the web browser,
heavily influenced its design. Netscape introduced JavaScript as a script-
ing language for web pages in 1995, but the initial scope of the language
was limited, with a focus on simple tasks inside the browser. Since then
the scope of the language has been expanded considerably but the core
design has remained the same. JavaScript is a dynamic language, enforc-
ing type rules during execution. The language includes a permissive type
system that marshals conflicting types, rather than halting with runtime
errors. This type system is often cited as a weakness because type errors
quickly propagate making them difficult to diagnose. The initial specifica-
tion was informal, with no standardization between vendors, but in 1996
ECMA began formally specifying JavaScript [38].

The features which make JavaScript difficult to manually reason about
also limit program analysis. In this section, we describe the features of
JavaScript which hinder meaningful program analysis and how language
revisions can impact the development of analysis tools.
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Node.js Node.js is a JavaScript framework based upon the Google V8
JavaScript engine. It is popular and often touted for the time-saving ben-
efits of having a single codebase spanning the client and server-side. Dis-
tributions of Node.js usually include NPM, a JavaScript package manager.
NPM is the largest repository of non browser-based JavaScript, with over
half a million open source packages. Node.js and NPM enjoy a near-
monopoly on browserless deployments of JavaScript. NPM has a laissez-
faire attitude towards quality controls, where anybody can publish a pack-
age with little vetting. The lack of oversight has led to a language ecosys-
tem renown for error-prone applications, unintuitive packages, question-
able long term reliability, and malware [96, 60, 134, 95, 83].

Future JavaScript ECMA publishes revisions of the JavaScript specifica-
tion frequently. These updates have included substantial syntax changes,
such as arrow function, classes, and promises [38]. Constant revision to the
specification is a challenge for any practical program analysis tool, which
has to support each new feature in order to analyze any new programs.
Evidence of this can be seen in prior work, which can only analyze pro-
grams written in previous versions of the language [111, 73, 108, 115].

2.1.1 The Type System

Enforcement of type rules can be either static or dynamic. Statically typed
languages enforce correct typing during program compilation, typically
by following explicit type annotations in the source code. Static type sys-
tems are often considered safer, since a compiler can verify that there are
no violations of type rules ahead of time, but add extra work for devel-
opers through explicit type annotation in source code. Dynamically typed
languages, such as JavaScript, do not include static type annotations in the
source code and only enforce type rules during program execution. The re-
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laxed enforcement increases the flexibility for the developer, enabling pro-
gramming paradigms that would be impractical in statically typed pro-
gramming languages.

In the ES6 standard the JavaScript type system allows for values to be
one of six different types [38]. Unlike other languages, JavaScript has
two distinct representations of emptiness, undefined, and null. The
boolean type can either be true or false. The values of the type number
are represented internally as 64-bit IEEE floating point values or 32 bit in-
tegers. Developers are given little control over the internal representation
of numbers but can force coercion through bitwise operations which trun-
cate numbers to integers. Strings are built-in and come with support for
a variety of common operations, such as indexOf and regular expression
matching. Objects are a reference type which map string keys to JavaScript
values. Arrays behave similarly to objects, but permit numeric and string
field names and have additional utility methods. Functions are special ex-
ecutable instances of objects and are first-class; i.e., they can be treated as
values, stored in objects and passed as function arguments or results. The
final type, Symbol, is a more recent addition to the specification. We ini-
tialize each Symbol with an identifier, but each new instance is unique in
the program. As these symbols are unique, the equality operator will only
return true when referencing the same Symbol, even if the compared one
that initialized with the same key. Symbols are often used to ensure the
correct behavior of field lookups in programs where type-coercion may
introduce ambiguity.

Despite constant revisions, the need for backward compatibility ensures
that the language remains burdened by its informal roots. The dynamic
type system is one component of the language where these issues are ev-
ident. While recent revisions have reduced developer burdon through
features like async/await and classes, the type system still relies on un-
intuitive type-coercions. The language rarely generates exceptions due to
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typing, instead coercing values to common types using a set of built-in
rules. These rules often lead to unintuitive code. For example, "5" - 5

== 0, but "5" + 5 == "55". The specification is also littered with historical
artefacts, such as typeof(null)== "object".

The language specification defines the coercion rules ToBoolean,
ToNumber, ToString, and ToObject. These rules are used throughout
the specification when defining operation behaviour or standard library
methods. Algorithm 1 and Algorithm 2 detail the coercion rules of any
value to a boolean or a string. In these examples we see that the specifi-
cation covers conversion from most types automatically, and usually does
not throw an exception. The full set of type coercion rules can be found in
the ECMA specification [38].

Some attempts have been made to address the issues with JavaScript.
Languages such as TypeScript [129] and Dart [33] are based upon
JavaScript, but introduce optional static typing. Such systems often lead to
less error-prone code when employed effectively; however they introduce
many of the pain points associated with statically typed languages, and
the existence of any types allows developers negate the benefits. Using a
new language can increase development overhead as all developers need
to learn the new syntax and design paradigms. Other approaches, such
as Flow [41] make less significant changes to the language and attempt
to use type inference to identify typing errors. Unfortunately, due to the
complexity of the JavaScript type coercions, Flow is generally imprecise
and often unable to produce useful output.

2.1.2 Classes in JavaScript

In JavaScript an objects schema is not fixed and new fields can be added
at any time. Instead of fixed classes which dictate what fields must exist
on an object, class constructors in JavaScript are as utility functions, taking
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Algorithm 1: ToBoolean(argument)

1 if argument is undefined then
2 return false
3 if argument is null then
4 return false
5 if argument is boolean then
6 return argument
7 if argument is number then
8 if argument is +0, -0 or NaN then return false;
9 return true

10 if argument is string then
11 if argument.length == 0 then return false;
12 return true

a fresh object and adding the desired fields. Here, prototypal inheritance
can be used to define the initial fields of a new object.

Class constructors are functions. When we call a method with the new
keyword the JavaScript interpreter will initialize a new object instance.
It then executes the method with the this value referencing the created
object. Upon termination of the function the new object is returned. For
example, the following program constructs a new object using the method
A:
1 function A(arg) {

2 this.arg = arg;

3 }

4 var a = new A("Hello");

5 console.log(a.arg);

In this program A is defined as a new function and the variable a is
initialised to a new instance of the class constructed with the argument
"Hello". The value of a.arg is then printed. Here the program prints
"Hello".

There is a second way we can define class fields. In JavaScript, the in-
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Algorithm 2: ToString(argument)

1 if argument is undefined then
2 return "undefined"
3 if argument is null then
4 return "null"
5 if argument is boolean then
6 if argument is true then return "true";
7 return "false"
8 if argument is number then
9 if argument is NaN then

10 return "NaN"
11 if argument is -0 or +0 then
12 return "0"
13 if argument is less than 0 then
14 return "-" + ToString(-argument)
15 if argument is +∞ then
16 return "Infinity"
17 return PositiveRealNumberToString(argument);
18 if argument is string then
19 return argument
20 if argument is Symbol then
21 throw TypeError
22 if argument is Object then
23 return ToString(ToPrimitive(argument))

terpreter finds object fields by walking along the prototype chain, a linked
list of objects. Every constructor function has a prototype field which pro-
pogates to new instances. If the interpreter looks up a field and it does not
exist it will walk through the chain of prototypes until it finds the field or
reaches a null prototype. If the whole prototype chain is explored and
the field does not exist then the interpreter returns undefined. This can
be used to predefine fields outside of a constructing method:
1 A.prototype.field1 = "Hello";
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2 let a = new A();

3 console.log(a.field1);

In this example, we add the field field1 to our classes prototype, con-
struct a new instance of A, and then print the field1 value, which will
print "Hello".

We can simulate object inheritance through the manipulation of these
prototypes. Take the following example:
1 A.prototype.getArg = function() {

2 return this.arg;

3 }

4

5 function B() {

6 B.prototype.constructor.call(this, "Hello");

7 }

8 B.prototype = Object.create(A.prototype);

9 let b = new B();

10 console.log(b.getArg());

In this example the prototype of B is chained to the prototype of A through
the method Object.create. As we construct a new instance of B the class
constructor calls the next constructor on the prototype chain, which is A,
with the argument "Hello". After that, we call b.getArg(), walking the
prototype chain and finding getArg in the prototoype of A. We execute this
function with b, which has this.arg set to "Hello" by the constructor A.

Objects and prototypes can be modified at any point during runtime,
including standard library built-ins, and we can even modify the base
Object prototype to introduce new values to all objects in a program.
This flexibility introduces ambiguity when inspecting a piece of JavaScript
as it is often difficult to identify where a change is introduced and what
fields will exist on new instances. The prototype inheritance chain is par-
ticularly troublesome when analyzing JavaScript statically due to the dy-
namic nature of changes.

Prototypal inheritance is still used in classes constructed through the
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class keyword introduced in 2015, as the class keyword is just syntac-
tic sugar.

2.1.3 Built-in Objects

The ECMA specification details every facet of the core language, includ-
ing a set of built in objects and methods. Many of these built-in objects
have intuitive use-cases, such as Function, String, and Object, which
provide methods for built-in types. Others, such as Math, and JSON,
act as namespaces for built-in utility methods. For example, the method
JSON.parse converts a JSON encoded string into an object. Later speci-
fications add objects like Promise, which standardizes asynchronous be-
haviors and paved the way for the now standardized async keyword,
and UintArray, which allow for control of variable sizes.

While the standard strictly defines method behaviour, implementation
is left to the vendor. This can lead to differences in behavior when com-
paring different implementations. Historically, developers have mitigated
the impact of these inaccuracies through handwritten software checks,
however as client-side JavaScript has become more integral to web ap-
plications these mitigations have become impractical. Instead, developers
now use JavaScript transpiler frameworks to rewrite JavaScript software
for maximum compatibility with browsers automatically. The use of these
tools allows developers to maintain a high level of browser compatibility
while developing large applications.

2.1.4 The Event Loop

JavaScript does not support multi-threaded concurrency, so programs can-
not load resources in a background thread, but synchronous blocking op-
erations (e.g., a network request) can prohibit the browser from rendering.
To solve this, JavaScript is structured asynchronously, with programs split
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into short blocks which execute when an event is triggered. Whenever a
block is not executing, the interpreter will check for triggered events and
yields any remaining CPU time to other components, such as the browser
renderer. Event callbacks are initialized during program startup, but can
be modified at any point during execution. For example, the following
program updates a HTML element every second:
1 var x = 0;

2 setInterval(() => {

3 x += 1; document.body.innerHTML = x;

4 }, 1000);

Here, we use the function setInterval to call an event handler repeatedly
at an interval of 1000ms. setInterval is called during initialization but
the callback it is supplied with is called by the event loop each time the
interval event triggers. If we instead used a while loop to achieve the same
thing, then the view in the browser would not be updated, since JavaScript
would always be running and the browser renderer would not have time
to repaint the page. Since blocking operations would cause responsiveness
issues, asynchronous events are often chained together to form complex
behaviours. For example, in the following program, a button click event
will trigger a network request, which will update the page contents when
it is completed:
1 document.getElementById("btn").onclick = function() {

2 request("data").then((data) => {

3 document.getElementById("content").innerHTML = data;

4 });

5 };

Modern JavaScript also supports the async and await keywords,
which allow developers to write asynchronous programs in an impera-
tive style. The async function tells the interpreter that a function is asyn-
chronous, and will not terminate immediately. The await keyword halts
the current function execution, and waits until an asynchronous Promise
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has finished before resuming. These keywords rely on the Promise in-
terface. A Promise is a standard interface for sequential asynchronous
behaviour which allows for chaining and error handling. When executing
an asynchronous method, statements are executed sequentially, but other
blocks may execute while waiting for asynchronous methods to complete.
Under the hood, the async keyword rewrites a method into a series of
asynchronous calls, passing the remainder of the function to be run into a
callback each time the await keyword is used.

2.2 Program Analysis

Automated program analysis encompasses all techniques that automati-
cally deduce properties of computer programs. In some cases it is suffi-
cient to only reason about simple properties of a program, such as check-
ing for specific feature usage, while in other cases, like full program veri-
fication, an exhaustive analysis of the possible routes through a program
is required. The field has developed a wide variety of approaches to deal
with these varying demands.

Program Analysis Approaches Program analysis approaches fall into
one of two categories, static or dynamic. A static analysis approach op-
erates on program code, reasoning about the entire program. In general,
full program verification through static analysis is undecidable [72] which
limits its use when analyzing real-world software. A static analysis will
approximate the behaviour of complex portions of a program in order
to keep reasoning feasible, leading to over-approximation. In an over-
approximate analysis false-positives can occur, manifesting as reports of
impossible errors or infeasible control flows. There are a wide variety of
different approaches to static analysis, ranging from program linting and
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type rule enforcing all the way to full program verification.
A dynamic analysis instead checks program properties through be-

haviour observed during execution. Such analysis will not produce false
positives since the analysis does not approximate behaviour. But a dy-
namic analysis can only report on observed errors, and would require the
exploration of all feasible control flows to prove properties of a program.
Non-trivial programs have an unbounded number of unique control flows
to explore, so full enumeration is generally infeasible. As such, in non-
trivial software dynamic analysis approaches are under-approximate, as
unobserved behaviours will not be reported upon.

White-box and Black-box analysis The terms white-box and black-box
are used frequently in program analysis and testing [93]. A white-box
analysis refers to one where the internal program workings are exam-
ined during analysis, treating the box containing the program as transpar-
ent. A black-box analysis assumes the program is opaque to the analyzer
and uses only observed environment behaviour to make decisions about
program correctness. Any static analysis is white-box since tools require
a complete representation of the program in order to make predictions
about program behaviour and conformance with a specification. A dy-
namic analysis can both be white-box or black-box depending on design.
A white-box dynamic analysis uses knowledge of program internals to
check that the program is executed in a specific way, and can replace com-
ponents in the program to reduce external factors. A black-box dynamic
analysis relies on only observed behaviours, such as program output and
file modifications, to make decisions about program correctness and the
program itself is executed unmodified.

Unit Testing, Integration Testing, Conformance Testing, and Test Suites

Current JavaScript programs are tested through a combination of white-
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box, and black-box dynamic test suites. In these approaches, we execute
a portion of the program with a series of fixed test inputs and check that
the program does not violate our expectations during test execution. In
unit testing, the test cases are white-box, and developers use a special test
harness to construct the test environment [55]. The test harness extracts
the tested portion of the software and stubs or mocks replace the rest of
the code using a false implementation with pre-set behaviours. Splitting
up the program allows units of the software to be tested independently,
which can make it easier to develop specific test cases. It also reduces the
impact of stateful behaviour, such as file system interaction, on the test
environment. Since the testing is white-box, the test harness can use the
state of variables and check if the program called functions to decide if
the program passes the test. Integration testing is usually the next step in
program testing. An integration test is black-box, executing the program
unmodified. Before execution, the test creates a test environment to reduce
the impact that external side effects can have on behaviour (e.g., program
databases are reset to a default state). After testing, the harness will use
the program output and environmental changes (e.g., checking that a new
entry is created in the database) to decide if the program is correct. When
developing a dynamic symbolic execution engine, we can re-use tooling
and paradigms designed for unit and integration testing. We can also use
the tests created for a program to guide the DSE engine toward exciting
portions of a program, but in general, we cannot use the same test asser-
tions since we do not know how DSE will impact the postconditions of
testing [98].

Implementation Conformance Tests Implementation conformance tests
are a particular case of integration tests. They are used to test if an imple-
mentation adheres to a specification in environments where multiple ven-
dors need to implement the same software. In JavaScript, implementation
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conformance suites are used to test that an interpreter is conformant with
a specification. The ECMA standards body publishes Test262, an official
JavaScript conformance suite which is used by many vendors to demon-
strate implementation conformance [39].

Program Fuzzing Fuzzing is a brute force approach to property violation
detection in software [121]. A fuzzer repeatedly re-executes a program
with randomly generated test cases. As the program executes, embedded
assertions in the programs source code are run. If the program terminates
with a failure then the input is provided to the operator so that they can
fix the error. Since the program is being executed concretely, fuzzing can-
not produce false positives. Modern fuzzing tools, such as AFL [5], use a
variety of strategies to generate new random inputs since a fully random
strategy is not likely to explore much of a program. The approach is ef-
fective when testing program interfaces, but the fuzzing engine does use
information about the program trace to guide inputs and will not explore
deeply into complex programs. Modern dynamic symbolic execution en-
gines extend fuzzing but use a solver to guarantee that each new test case
explores a unique route through the program [49].

2.2.1 JavaScript Analysis Tools

Mechanised analysis of JavaScript is challenging because of the complex
dynamic type system and prototype based inheritance system, and natural
language specification. Previous work toward mechanised specifications
of JavaScript have modelled subsets of the language [110, 17, 46, 99], but
there is no complete mechanised semantic for the current standard. Verifi-
cation of JavaScript programs is limited by the same constraints, and there
is no engine that can run on the majority of real-world JavaScript pro-
grams [108, 45, 103]. Here, researchers cite the complex type system and
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dynamic nature of the language as the bottleneck for practical analysis.
There are other approaches toward improving the reliability and secu-

rity of JavaScript programs without verification. JavaScript has mature
unit testing and fuzzing frameworks [65, 87, 117]. Unit testing is capable
of finding complex errors in a program, but requires manual creation of
test cases. Unit testing JavaScript programs has additional challenge, as
developers need to add test cases for type coercions in addition

challenge as developers need to add test cases for type coercions in ad-
dition to the tests for behaviour. Fuzzing automatically generates new
test cases by guided random test generation, it is good at testing earlier
portions of the program but is rarely able to explore deep inside an im-
plementation. Fuzzing is more limited in JavaScript, where inputs to a
method can be strings, arrays, or objects, making less likely that the ran-
dom input generator creates a valuable input.

Hedin et al. [57] develop a custom JavaScript interpreter to track infor-
mation flow through a program execution. Information flow tracking is an
effective approach for finding security vulnerabilities, such as key misuse,
through runtime behaviour. While this is effective at errors, it is a dy-
namic analysis, so it will only be effective if the test suite includes a case
for violating control flow. This limitation could be mitigated by usage in
the production environment, where the software would terminate upon
property violation, but the performance overhead would be too high for
most environments.

Chugh, Herman, and Jhala [31], Vekris, Cosman, and Jhala [131], Ras-
togi et al. [104], and Swamy et al. [122] add additional type information
to JavaScript or TypeScript programs in order to improve program safety.
These additions mitigate some common mistakes, but they cannot be used
to test every property of a program. They also increase developer over-
heads, since the developer now has to deal with the dual concerns of
building their type annotations and implementing the program.
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2.2.2 Symbolic Execution

Symbolic execution is a program analysis approach which systematically
explores all control flows through a program contingent on specified in-
puts [69, 100, 9, 124, 81, 119]. First, some inputs to a program are re-
placed with symbols and then the program is run with a special inter-
preter. As program execution progresses symbolic expressions will be
developed rather than concrete values whenever an operation involves
a symbolic value. When treating a conditional operation contingent on a
symbolic expression, the interpreter will attempt to fork program execu-
tion if there is a feasible input that will take each branch. The fork op-
eration on each conditional causes the symbolic interpreter to explore all
control flows through the program contingent on the symbolic input val-
ues. In order to fork, the program trace up until the branching condition is
represented as a constraint problem and a solver will be used to decide if
each branch is satisfiable. If a branch is satisfiable, then it is included in the
fork and tracked, if it is not satisfiable then that control flow through the
program is impossible. While symbolic execution can be used for program
verification [62, 14, 63, 68], the complete exploration of all paths through
a program is generally infeasible, which limits the use of symbolic execu-
tion for program verification and proofs. However an incomplete result
can still be useful, since we know that any policy violation reached is fea-
sible. This makes symbolic execution suited to program testing, where the
incomplete results can still find bugs and policy violations in a program.

2.2.3 Example: A Simple Symbolic Execution

To demonstrate symbolic execution, we present analyze the following pro-
gram:
1 let x = X;

2 if (x > 10) {
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3 if (x + x < 20) {

4 console.log("Hello");

5 }

6 }

This program initialises a new symbolic input X, and assigns it to the vari-
able x. Then, it prints "Hello" if x is greater than 10, but x + x is less than
20.

To symbolically execute the program, we begin by constructing the new
symbol X and then exploring the conditional operation if (x > 10). Since
this conditional operation is contigent on our symbol X, we query our SMT
solver to see which of the branches can be explored. Our first query con-
firms that the branch X <= 10 is feasible, leading to the following control
flow:

if (x > 10)

Terminate

X ≤ 10

Once we have explored that branch, we ask the constraint solver if X >

10 is feasible, and we find that it is, proceeding onto the second if condition
if (x + x < 20), having explored the following control flows:

if (x > 10)

Terminate if (x + x < 20)

X > 10X ≤ 10

As before, this conditional operation has symbolic operands so we use
our constraint solver to find our which branches are feasible. To begin, we
find that X + X >= 20 is feasible, leading to program termination:
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if (x > 10)

Terminate if (x + x < 20)

Terminate

X > 10X ≤ 10

X + X ≥ 20

We now use the constraint solver to decide if X + X < 20 is feasible.
Here, the constraint solver decides that there are no feasible assignments
for X + X < 20, given the previous assertion that X > 10. As such, this
branch is infeasible as there is no possible assignment for X that will ex-
plore it. There are no more branching conditions to explore, so we now
terminate symbolic execution with the final control flow graph:

if (x > 10)

Terminate if (x + x < 20)

console.logTerminate

X > 10X ≤ 10

X + X < 20X + X ≥ 20

2.2.4 Dynamic Symbolic Execution

In this thesis we focus on the use of dynamic symbolic execution (DSE) for
JavaScript analysis. DSE (or concolic execution) is an offline approach to
symbolic execution where a concrete state is maintained alongside a sym-
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bolic symbolic state and both the symbolic and concrete state are devel-
oped concurrently. The symbolic interpreter performs both the standard
(concrete) execution, and also develops a symbolic state. Instead of fork-
ing immediately on conditional operations, a DSE engine generates new
test cases on program termination [49]. To achieve this a path condition
encodes the conditions under which the current path will be taken. The
path condition is a conjunction of all the predicates of conditional state-
ments with predicates negated where the else branch was taken. After a
program terminates, the path condition is sent to a constraint solver, which
finds new test cases by negating conditional constraints along the path.
If a query to the constraint solver is unsatisfiable, the path corresponding
to the new path condition is infeasible; if the solver returns a satisfying
assignment then we query the solver for an assignment of our symbolic
program inputs that satisfy the constraints and use these as the concrete
inputs to our next test case. This process is repeated until all paths have
been covered or a stopping condition is reached. Note that since dynamic
symbolic execution requires programs to terminate reactive programs like
servers will require a test harness that produces a single self-contained
run. By maintaining a concrete state, mistakes in the modelling of the
program symbolically do not impact interpreter execution. DSE has been
used in a variety of different domains, and has been demonstrated as an
effective approach to program testing [49, 50, 51, 52].

A dynamic symbolic execution engine can choose to execute parts of
the program concretely and still remain sound with respect to under-
approximation. This removes the need to model the complete environ-
ment, a common cause of errors in other analysis techniques. It also al-
lows for analysis of code which cannot easily be reasoned about statically,
such as reflection or dynamically generated code.
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Concolic Values We maintain dual concrete and symbolic state through
concolic values, a data structure with a concrete and symbolic component.
In a concolic value the concrete component is a JavaScript value used by
the DSE engine to decide on the behaviour along this path, while the sym-
bolic component is the set of constraints applied to the symbol as the pro-
gram executes. A concolic representation of values in a program allows
us to link the symbolic and concrete representations tightly [114]. We use
concolic values to propagate the concrete representation of a value for this
test case and the symbolic expression which encodes the constraints ap-
plied to that value concurrently. When we introduce a symbolic input, it
is provided with an initial concrete value and represented as a structure.
For example, we would represent a new integer symbol X with an initial
value of 0 as {symbolic: X, concrete: 0}. When executing a program,
the symbolic interpreter will check if operands are in this form while pro-
cessing each instruction, and if so, it will treat them symbolically rather
than concretely. The use of concolic values makes maintaining dual con-
crete and symbolic states concurrently more straightforward.

Prior JavaScript DSE Engines

Previous symbolic execution engines for JavaScript were effective at bug
finding in web applications and browser extensions [109, 111, 73, 115, 7].
Some of these engines include a limited support for strings, but no en-
gine has a complete support for regular expressions [111, 7]. One com-
mon limitation we found with these engines was the limited compatibil-
ity with real JavaScript programs. Saxena et al. [111] and Li, Andreasen,
and Ghosh [73] developed custom versions of JavaScript interpreters to
facilitate symbolic execution. These engines were not maintained and the
complexity of instrumenting a modern JavaScript engine made it difficult
to merge changes to JavaScript into the project. As a result, these engines
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are incompatible with current JavaScript. Other works used instrumen-
tation based approaches, which were more compatible, but did not factor
the JavaScript event loop into their design, which could cause incorrect
executions [115]. At the onset of this work, we found there were no up-to-
date symbolic execution engines for JavaScript capable of executing real-
world programs, and while there has been some further development, Ex-
poSE, the tool we develop in this thesis, is currently the only DSE tool for
JavaScript capable of analyzing real-world Node.js applications and web-
pages. This motivated our decision to focus on developing an architecture
compatible with real-world JavaScript, maintainable, and able to run in
the browser and on the server-side.

2.2.5 Applications of Symbolic Execution

Symbolic execution can be used to find specification violations. During
execution, the symbolic analyser can use the collected path constraints and
the SMT solver to attempt to find path-specific specification violations. For
example, given a specification which demands that no reference should
ever be set to a null value, the symbolic engine can test the specification by
querying whether it is feasible for the value being assigned to be null for
each assignment encountered along the program trace, and if it is possible
the symbolic execution will be able to generate a test input that will violate
the specification. Specification testing through DSE automates detection of
non-obvious security flaws, such as the detection of weak TLS certificate
validation [27], or verifying non-interference [85].

Chandra, Fink, and Sridharan [25] propose the use of backwards sym-
bolic execution, beginning at an interesting point within the program and
working back to the program entry point. This approach allows for analy-
sis to only consider paths that will drive execution toward a specific part of
the program, but is under-approximate along paths which consider loops
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or recursion. One advantage of this work is the potential to act as a verifier
for an analysis that can produce false positives. By setting the potential er-
ror point as the starting point for analysis, backwards symbolic execution
can decide whether there is any feasible input that really triggers the bug
without the overhead of standard symbolic execution or input fuzzing.

Symbolic execution and model checking can be combined to produce
faster program verifiers [137]. Here, the symbolic execution is used to
produce path level models of a program, which a model checker can use
to prune redundant paths. The combined approach notably reduces ver-
ification times when compared to a purely symbolic approach, enabling
verification of more complex programs.

Differential symbolic execution allows a symbolic execution engine to
decide if two versions of a program have equivalent behaviour [101]
through the generation of comparable program summaries. This enables
automatic regression detection after program refactors.

Yadegari and Debray [136] demonstrate that DSE can expose obfus-
cated malicious behaviours in programs. Often, malicious behaviours
are craftily hidden within obfuscated programs, and do not execute un-
til specific conditions are met. Such behaviours are often out of reach of
manual or static analysis, as they often rely on code patching or dynamic
code injection. By making inputs and environment variables symbolic,
a symbolic analysis can identify these obfuscated behaviours. Similarly,
symbolic analysis can find the set of URLs that an application will con-
tact [142], allowing developers to examine undocumented web APIs and
find potentially malicious or insecure behaviours. It has also been used to
analyze deep neural networks, with particular success in the detection of
adversarial inputs [53]. A neural network can be symbolically executed by
converting that network into an imperative program. From there, the sym-
bolic execution can be used to detect edge cases that could be exploited to
craft malicious inputs, such as finding single pixels that can decide the
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outcome of a classification.

Guo et al. [54] show that symbolic execution can identify differences in
program execution due to speculative execution. This is useful when test-
ing implementations of cryptographic primitives, where information may
be leaked by processor specific side channel attacks due to speculative ex-
ecution.

Performance profiles and probabilistic average, best, and worst case
performance of a program can be discovered through symbolic execu-
tion [28]. This is useful both in evaluating practical program bottlenecks,
but also as a tool for education, where it can be used to automatically
identify input-specific flaws that hurt the worst-case performance in an
otherwise correct implementation.

Test generation through symbolic execution is often unable to scale
when analyzing large programs. Compositional symbolic execution [48]
provides an alternate, bottom up, approach to symbolic execution which
can further overall analysis. Here, portions of the program are summa-
rized into a set of pre and post conditions, reducing the complexity of con-
straints considered. Later improvements to this work introduce demand-
driven compositional symbolic execution [8], which allows for incomplete
summaries, performing expensive analysis only if the summary is incom-
plete for a given path.

2.2.6 Unique Challenges for Symbolic Execution of JavaScript

Analysis of JavaScript programs comes with some unique challenges. The
highly dynamic nature of the language makes it expensive to accurately
represent values in the program symbolically in a manner suitable for
practical analysis. Modelling implicit type coercion rules using current
SMT solvers is often impractical due to a lack of support for conversion
between symbols of different theories or solving times too long for practi-
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cal DSE. For example, when using the builtin support for string to integer
conversion in Z3, the simple constraint problem below tries to reinterpret
the string "65" as an integer, selecting the character "6" from the string "66"
and the character "5" from the string "55", fails to solve within the default
timeout set by the Z3 tutorial website 1:
1 str.to.int (str.++ (str.at "55" 1) (str.at "66" 0))

The language features many subtle nuances, such as typeof(null)== "

object", which need to be modeled in order to maintain backwards com-
patibility. Symbolic representation of these features requires a mechanised
encoding and carries significant development effort. Further, JavaScript
software relies heavily upon asynchronous event callbacks for general op-
eration since there is no parallelism within the standard language. Call-
backs are frequently used so it is essential that a symbolic execution frame-
work correctly handles asynchronous events. Additionally, programs also
make heavy use of string and regular expression operations. Effective rea-
soning about programs which perform heavy string processing is often
limited, as the cost of symbolically executing string methods and regu-
lar expression matchers prohibits meaningful analysis. Recent constraint
solvers have drastically improved support for string processing, and often
have a limited support for regular expression constraints, but this support
is insufficient for JavaScript, where regular expressions include capture
groups and backreferences.

2.3 Satisfiability Modulo Theories and Program

Analysis

SMT solvers are widely researched and utilized in academia and indus-
try [97, 18, 12, 88, 105]. Satisfiability Modulo Theories (SMT) are decision

1https://rise4fun.com/Z3/
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problems expressed in first-order logic. An SMT solver is a tool which can
take these SMT problems and decide if there is an input which satisfies
all of the constraints. Many state of the art SMT solvers use DPLL(T), a
solving architecture where DPLL boolean satisfaction is combined with a
set of theories to reduce the time it takes to take SMT problems. In this
architecture SMT solvers reduce constraint problems expressed in first or-
der logic into boolean satisfaction problems which can then be solved by
a SAT solver [35, 34]. SAT solving comes at heavy cost, so solvers reduce
the complexity of the underlying SAT problems through the use of theo-
ries [44, 94]. In DPLL(T), the complexity of problems is reduced through
the use of theory solvers, specialized solvers which can only reason about
conjunctions of formulas specific to that theory. In this architecture a SAT
solver generates a series of assertions. These assertions are then forwarded
to the relevant theory solver. The theory solver will be used to check and
refine refine the problem. This process of refinement continues across mul-
tiple iterations until a solution to the problem is found or the problem is
found to be unsatisfiable.

Current state of the art SMT solvers support many theories which are
useful for program analysis, such as bitvectors, strings, or floats, and are
often necessary to make problems which use these feasible [88, 37, 19, 139].
In DSE we use an SMT solver to find alternate test cases [49]. SMT can be
used to represent program control flow by representing the steps taken
during a programs execution as a series of constraints on the inputs to
the program. We can use this to find new inputs to a program by taking
the constraints applied at the point of a conditional operation and testing
whether there is an assignment of inputs to the program that would have
produced the opposite outcome for that conditional operation given the
collected constraints. Through this we can find new inputs for DSE. In ad-
dition to finding new inputs, the constraints collected along a control flow
can be used to test assumptions about a program. For example, if a pro-
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gram has a rule that a property of an object can never be set to null, this
can be tested for all observed paths by collecting the constraint problems
and using an SMT solver to query for the counter case, an instance where
the property is set to a value other than null. If this problem is unsatisfi-
able, then the assumption is never violated across the observed executions
of the program.

The DSE tool introduced in this thesis is driven by the Z3 SMT
solver [88]. Z3 is a state-of-the-art SMT solver with theory for strings,
regular expressions, and arrays. The solver includes language bindings
for C, Python and several other languages however it does not support
JavaScript out of the box.

Strings in Constraint Solvers Strings and regular expressions are ubiq-
uitous in JavaScript programs. Current SMT solvers include a degree of
support for strings and regular expressions [43, 2, 3, 1, 141, 139, 130, 77],
but this support is limited to regular languages. In JavaScript, regular
expressions are non-regular, supporting features like capture groups and
backreferences, and so cannot be directly encoded into SMT by existing
solvers.

Prior Analysis Tools with String Support Prior work has used the sup-
port in solvers to analyze software [111, 7, 4, 67, 128]. In these works, it
was shown that strings are highly utilized and support improves the ef-
fectiveness of analysis approaches. Previous work symbolically executing
JavaScript has included a degree of support for strings [111, 7], but no
prior work included a full support for JavaScript regular expressions.
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2.4 Source Code Instrumentation

In DSE we monitor each instruction processed to develop a symbolic trace.
Typically this is achieved via a custom interpreter or rewriting the pro-
gram [111, 73]. A custom interpreter provides a high level of granular-
ity, as the entire state of the program is known, but it has maintenance
overheads since the developer must now keep their custom language in-
terpreter up to date. JavaScript has seen rapid development in the last 10
years with a new language specification released once per year on average.
With such a rapid rate of change the development effort of maintaining a
custom JavaScript interpreter and keeping it compatible with real world
software is infeasible for most research groups. A custom interpreter also
locks the symbolic execution engine to a single JavaScript vendor, but it
would be ideal if the same DSE framework can be used to test software
on different interpreters. The alternative is to rewrite the program so that
it records the program trace as it executes [115, 86, 120, 138]. Here, we
can use existing open source software to assist us, since there are already
open-source libraries for parsing and rewriting JavaScript programs such
as babel and acorn. By using these tools we can inject the program
tracing component of a DSE engine directly into the program source code.
Since our DSE engine is embedded into the program under test, it can then
be executed on any interpreter.

2.4.1 Instrumenting JavaScript

Jalangi2 is a framework for the instrumentation of Node.js applications,
designed to enable the construction of dynamic analysis [115]. The tool
takes a program and instruments it so that every operation triggers a
callback, tracking operations through a minimal interface by rewriting
complex operations into simpler ones. Callbacks are provided with all
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1

2 let x = input;
3 x = -x;
4 let y = x + 5;
5 if (y > 5) {
6 throw "Bad Input";
7 }

Uninstrumented

1 process.on("exit", () => { done(); });
2 let x = input;
3 x = unary("-", x);
4 let y = binary("+", x, 5);
5 if (conditional(binary(">", y, 5))) {
6 throw "Bad Input";
7 }

Instrumented

Figure 2.1: An illustration of source code instrumentation.

operands to the instruction, allowing for granular dynamic analysis. From
this, the analyser is presented with a monitor of the program from which
they can perform analysis. Jalangi2 resolves dynamic code injection, such
as eval and require, transparently by instrumenting any new code added
to the program on demand. The tool supports JavaScript ES5 through
a custom language rewriter based on the acorn parsing framework. It
generates JavaScript output files which can then be directly executed by
a JavaScript interpreter.

2.5 Example: A Prototype DSE Engine By

Instrumentation

We now build our own simple DSE engine through source code instru-
mentation. In this example, we will draw on our description of DSE en-
gines (Section 2.2.4), and program instrumentation (Section 2.4), to de-
velop a simple symbolic execution engine which can track unary and bi-
nary operations. Our DSE engine will use concolic values to propagate
symbolic expressions through the execution (Section 2.2.4). First, we build
up a set of callbacks. Then, we instrument the program we want to test,
adding callbacks for unary, and binary operations as well as conditional
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branching. We also instrument the program to call a method once execu-
tion terminates.

Our prototype DSE engine is presented in Figure 2.2. This implemen-
tation expects for the unary, binary, and conditional callbacks to be called
during execution and for done to be called when the program terminates.
In our prototype, the unary and binary callbacks develop symbolic expres-
sions through their respective symbolicUnary and symbolicBinary meth-
ods. When we reach a conditional operation, our callback will check if the
branching value is symbolic. If symbolic, we add to the path condition so
that new test inputs can be generated upon program termination. When
done is called, we use an SMT solver to find any feasible alternate routes
for the branching conditions explored during this execution. If feasible,
new inputs will be executed with the Replay method. Note that, in a real
implementation a guard would be added to prevent the creation of repeat
cases.

We now move on to the program we are going to execute with our DSE
engine. Figure 2.1 shows the original and instrumented code for the pro-
gram we will analyze. The program begins by assigning x = input, which
is our symbolic input. We then negate it with a unary operation. Next, the
variable y is set to x + 5. Finally, the program uses an if condition to crash
on positive values of x, since y > 5 implies that x > 0. When instrument-
ing the unary operation on line 3, we replace -x with a function call to the
unary callback method with the operation and operands. The callback al-
lows the analysis analysis to observe, and potentially modify the result of
the operation. Similarly, on lines 4 and 5, we replace the binary operation
and conditional operation with callbacks so that the analysis can track and
potentially modify the result.

To execute our program, we replace our input for x with a concolic
value (Section 2.2.4), an object with a concrete and symbolic portion. For
our initial test case we use the input {symbolic: X, concrete: 0}. Upon
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reaching line 3, we execute our unary callback. This calls the symboli-
cUnary method and generates the return value {symbolic: -X, concrete

: -0}. Next, we execute line 4, triggering the binary callback. This, in
turn, calls the symbolicBinary method and assigns y the concolic value
{symbolic: X + 5, 5}. Executing line 5, the binary operation produces
the symbolic value {symbolic: X + 5 > 5, concrete: false}, since 5 is
not greater than 5, and our conditional callback uses this result to assert
¬(X + 5 > 5) onto the path condition, since X + 5 is equal to 5 in this
test case. The program now terminates, and our done callback is triggered.
Here, the solver checks if there is any feasible assignment for X such that
X + 5 > 5, and generates a new input X = 1. The replay method is then
called with this new input, triggering the process to begin again, exploring
the new path. During the next execution, we explore the alternate branch
of the if condition, since our input of 1 will cause X + 5 > 5 to be true.
Here, we trigger the program throw, showing that it is possible to trigger
this assertion.
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1 function unary(op, operand) {
2 if (isSymbolic(operand)) {
3 return symbolicUnary(op, operand);
4 } else {
5 return concreteUnary(op, operand);
6 }
7 }
8

9 function binary(op, left, right) {
10 if (isSymbolic(left) || isSymbolic(right)) {
11 return symbolicBinary(op, left, right);
12 } else {
13 return concreteBinary(op, left, right);
14 }
15 }
16

17 function conditional(op, branchingValue) {
18 if (isSymbolic(branchingValue)) {
19 if (branchingValue.concrete) {
20 assertPathCondition(branchingValue.symbolic);
21 } else {
22 assertPathCondition(¬branchingValue.symbolic);
23 }
24 }
25 return branchingValue.concrete;
26 }
27

28 function done() {
29 for (conditional in pathCondition) {
30 if (Solve(¬conditional)) {
31 Replay(NewInput());
32 }
33 SolverAddConstraint(conditional);
34 }
35 }

Figure 2.2: A prototype DSE engine by instrumented callbacks.
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In this chapter, we introduce ExpoSE, our new dynamic symbolic execu-
tion tool for JavaScript programs, describing the novelties of our design.
We then demonstrate that compatibility with modern JavaScript standards
notably impacts the performance of a DSE engine and that our default test
case selection strategy improves coverage in time-limited scenarios and
decreases coverage plateaus.

Prior Appearances The paper introducing ExpoSE was published at the
SPIN workshop in 2017. It is a joint work with Duncan Mitchell of Royal
Holloway, University of London, and Johannes Kinder of Research In-
stitute CODE, Bundeswehr University Munich. This chapter shares the
name of that work, but focuses on the design and technical novelties of
ExpoSE, as well as adding support for ES6 and ES7.

3.1 Introduction

In this chapter we detail ExpoSE, our new DSE engine for JavaScript,
highlighting the areas of the design that enable analysis of real-world
JavaScript. Our design under-approximates the language when treating
type-coercions and non-modeled methods, but our support is sufficient
for meaningful analysis of most real-world JavaScript programs. We in-
clude a versatile function modeling framework that allows for a developer
to specify custom models and concretization rules, enabling extension of
ExpoSE when the default support is insufficient. We address the issue
of language compatibility by leveraging existing source code instrumen-
tation and transpiler tools. These tools are widely relied on in the com-
munity for maintaining compatibility with older browsers, and are inte-
grated into ExpoSE in such a way that they can be quickly upgraded or re-
placed with alternative tools upon the release of new JavaScript standards.
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With this approach we maintain a high level of compatibility with current
JavaScript standards while avoiding a significant maintenance burden. To
address the maintainability and compatibility problems we observed in
prior work we split the engine into components. Our component based
design enables support for multiple different analysis backends, which we
demonstrate through our support for both Node.js and web applications
out of the box. To decrease analysis times we execute test cases concur-
rently, directed by a scheduler. Concurrent execution of test cases allows
better scaling when analyzing large applications, which, when combined
with a practical focus for function models, lets us analyze all but the most
expansive JavaScript applications.

We evaluate the utility of our new engine through two studies. Here,
we show that ES7 support is critical for any engine targeting mod-
ern JavaScript programs, increasing compatibility with the most popular
packages on NPM by 24%. In the same study we see that ExpoSE is com-
patible with 83% of the 1000 most depended packages on NPM, demon-
strating that our instrumentation approach is widely compatible with real-
world code. We also demonstrate that our test case selection strategy pri-
oritises test cases which explore new portions of the program, increasing
the overall amount of a codebase which DSE explores.

To summarize, in this chapter we present our first contribution, ExpoSE,
to our knowledge the first DSE engine for JavaScript which supports both
web and Node.js applications. We address the practical issues that need to
be overcome when trying to support real world JavaScript. In particular,
we:

• Present a scalable, distributed, instrumentation based approach to
JavaScript DSE.

• Detail a practical incremental modeling approach for the type sys-
tem and built-in methods.
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• Detail our coverage calculation and test case selection approaches.

• Evaluate the compatibility of our approach on popular Node.js li-
braries and justify our choice of test selection strategy.

3.2 Example: Symbolic Execution With ExpoSE

To illustrate how ExpoSE analyzes a program we now run through the
symbolic execution of a small argument preprocessor. ExpoSE is a concolic
execution engine, so test execution involves both a concrete component, to
handle the current test case, and a symbolic component which tracks the
symbolic state. Our example program uses several complex JavaScript
features, including dynamic type coercions and a regular expression in
order to process arguments for the method execute(...):
1 process.argv = S$.symbol("argv", [""]);

2 if (process.argv.length != 2) {

3 throw "Incorrect number of arguments";

4 }

5 const target = process.argv[process.argv.length - 1];

6 const parsed = /name=(.+)?/.exec(target);

7 if (!parsed) {

8 throw "Incorrect argument format";

9 }

10 execute(parsed[1].toLowerCase());

One line 2 the program checks that it has been called with the correct num-
ber of arguments. If it has, then the last argument is extracted (line 5), and
a regular expression is used to parse it (line 6). In order to symbolically
execute this program we need support for symbolic arrays, strings, and
regular expressions. The goal of our analysis is to identify a subtle bug
trigerred by lines 6 and 10.

To begin we replace the concrete arguments with a symbol. The S$ li-
brary is the interface between ExpoSE and the program-under-test. The
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symbol method returns a fresh symbol from a symbolic name and initial
test case input. Next the program checks if it has been called with the ex-
pected number of arguments. As the input to our first test input, [""], has
a concrete length of zero we explore the false case and trigger the throw.

Start

Throw

argv.length

!= 2

The symbolic state is now used to generate an alternate test case which
would satisfy the argv.length == 2 constraint. We find the input ["", ""

], an array with two empty strings. Executing this new test case we now
reach line 5, which selects the last argument from argv and assigns it to
a variable target. This does not result in any alternate paths as we have
already checked that the length of argv is not zero. After this the regu-
lar expression operation /name=(.+)?/.exec(target) extracts the program
input from the target string. Operation success is checked with the fol-
lowing if condition. For our current input ["", ""] the string does not
match the regular expression, triggering the throw.

Start exec(...)

Throw Throw

argv.length

!= 2

argv.length == 2

parsed

== null

The symbolic state is now used to generate a new input which satisfies the
regular constraint, ["","name=xyz"]. This new test case reaches line 10,
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and calls toLowerCase() on the first capture group of the regular expres-
sion. Capture groups return all characters matched between complemen-
tary ( and ) characters in a regular expression and are widely used. In this
case the capture group should contain whatever is matched by the (.+) in
our regular expression. In our current test case the capture group will be
the string xyz which is then passed to the method execute(...).

Start exec(...) toLowerCase()

Throw Throw

execute(...)

argv.length

!= 2

argv.length == 2

parsed

== null

parsed != null

parsed[1] !=

undefined

It is here we find our subtle bug in the program. In our regular expression
we have written name=(.+)? rather than name=(.*). Here the optional (?)
operator outside of the capture group allows for the capture group to be
undefined in a match. To explore this this ExpoSE will now generate a new
test case, ["", "name="], where the regular expression will be satisfied but
the first capture group will be undefined. As we execute this test case we
will call undefined.toLowerCase(). This will trigger a runtime error.

Start exec(...) toLowerCase()

Throw Throw

execute(...)

Runtime Error

argv.length

!= 2

argv.length == 2

parsed

== null

parsed != null

parsed[1] !=

undefined

parsed[1] ==

undefined
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Figure 3.1: The ExpoSE architecture.

With this final test case complete ExpoSE has exhausted all of the unique
routes in which the program could be executed, and has found all of the
exceptions which could be triggered by and incorrect input to the pro-
gram.

3.3 General Architecture

ExpoSE is a instrumentation based concolic execution framework for
JavaScript. ExpoSE takes a JavaScript program and a symbolic unit test
(the test harness) and generates test cases until it has explored all feasible
paths or exceeds a time bound. Multiple test cases can be executed con-
currently. ExpoSE consists of three main components, the test executor, test
distributor, and the SMT Solver, as shown in the overview in Figure 3.1.

The distributor manages the global state of the exploration, aggregates
statistics, and schedules test cases for symbolic execution. The test execu-
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tor handles program instrumentation, execution and fault reporting for a
single test case. Program coverage is tracked inside the executor through
instrumented callbacks. A symbolic interpreter inside the test executor
keeps track of symbolic state during execution, including symbolic func-
tion models. The SMT solver component is used by the executor to extract
alternate test cases given a complete symbolic program trace. This com-
ponent converts the abstract symbolic state to an SMT program for the Z3
solver and also houses our regular expression parser and refinement strat-
egy. As a test executor instance terminates it transfers all relevant state to
the distributor. This architecture allows for multiple concurrent test ex-
ecutors instances, each processing a unique test case. ExpoSE includes
symbolic exploration strategies for all JavaScript types except functions.
In the case of objects and non-homogeneous arrays a type-aware enumer-
ation strategy is applied to facility exploration.

3.4 Test Case Parallelism

ExpoSE is designed to execute many test cases concurrently through its
decoupled architecture. The distributor is responsible for prioritisation
and scheduling of test cases, as well as presenting analysis information to
the operator. The test case executor is responsible for test case instrumen-
tation, execution, and alternative test case generation. It does not produce
any output directly and instead relays all information through the distrib-
utor. Since test cases can be executed in parallel, individually tricky test
cases do not block the overall analysis from making progress.

There is only a small amount of communication between the distribu-
tor and executor instances. When a new executor instance is created the
distributor issues it with a concrete input for each symbol in the program,
as well as a bound expansion variable which is used to prevent repeating
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previously explored test cases [50]. The executor then executes entirely
independently from the distributor until either analysis is completed or it
is terminated due to an execution timeout. Upon termination the executor
transfers its state to the distributor. This state includes any runtime ex-
ceptions, a coverage map, and any alternative test cases which should be
explore. The distributor uses this information to schedule new test cases,
as well as produce reports.

3.5 Test Case Isolation

JavaScript programs execute in a single thread, but rely on asynchronous
operations to achieve pseudo parallelism. Callbacks from triggered asyn-
chronous operations are not executed preemptively, and will only process
when the current execution finishes. In order to avoid issues from linger-
ing asynchronous events we create a separate process for each test case
and do not reuse test execution instances. This prevents spill-over effects
from one execution to the next where the program affects the global state
or dynamically modifies parts of the standard library.

3.6 Source Code Instrumentation

We rewrite programs into a language subset which preserves the se-
mantics of the program, while using fewer distinct operators. This lan-
guage subset allows for straightforward symbolic execution by reducing
the number of language features which require modelling. The source
code instrumentation in ExpoSE is performed by a modified version of
the Jalangi2 [115] instrumentation framework. Jalangi2 supports dynamic
code injection through methods like eval and require by instrumenting
new code on-demand. Our modifications to Jalangi2 include support for
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Table 3.1: Instrumented language operations.

Feature Description

getField Read a specified field from a JavaScript value. In Ex-
poSE we track these to develop symbolic object mod-
els.

setField Set the specified field on a JavaScript value. In ExpoSE
we track these to develop symbolic object models.

invokeFun Invoke a function with the specified thisValue and ar-
guments. In ExpoSE we track these to exercise func-
tion models.

binary Perform a binary operation with a specified operation
and two values. In ExpoSE we track these to develop
the symbolic state.

unary Perform a unary operation with a specified operation
and value. In ExpoSE we track these to develop the
symbolic state.

conditional Perform a conditional check with a specified
JavaScript value. In ExpoSE we use track these
to develop the path condition.

ES6 and ES7 and improved support for instrumentation of webpages, re-
quired for Browser support (Section 3.9).

Jalangi2 reduces all operations which require instrumentation into the
operations listed in Table 3.1. ExpoSE uses these hooks to develop sym-
bolic execution. The source code instrumentation adds a monitor to the
program through callbacks which execute before and after each rewritten
statement. When instrumenting a program it is important to only add
code where essential to avoid slowing down program execution. In Ex-
poSE we add custom logic for these six behaviours in order to implement
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symbolic execution. At each of these steps, operands to the operation are
checked, and if none are symbolic then we default to the native interpreter
behaviour. In the case that one of the operands is symbolic we use our
symbolic interpreter to model the behaviour of the program.

3.7 Symbolic Values and the Type System

ExpoSE can symbolically represent JavaScript values for the data types:
null, undefined, boolean, number, string, array, and object. This is
achieved through a translation of each operation on these variables into
SMT via a set of custom encodings. Support for non-homogeneous arrays
and objects is achieved through a intermediate encoding layer. In this sec-
tion we describe the SMT encoding for JavaScript values in ExpoSE (Sec-
tion 3.7.2, Section 3.7.3). We then cover our support for symbolic arrays
and objects (Section 3.7.4). Finally, we describe how we handle type coer-
cions in ExpoSE (Section 3.7.6).

3.7.1 Example: Concolic Values in JavaScript

We will now illustrate how ExpoSE propagates symbolic values through
an example trace of a program execution. Take the following program:
1 let a = S$.symbol("A", 10);

2 let b = a > 5;

3 if (b) {

4 ...

5 }

In this program, we first create a symbolic value by calling a library
function S$.symbol(name, initial). The method symbol takes a symbol
name, an identifier for the symbol in SMT, and an initial value. The initial
value is used as the seed value for the first test case. In ExpoSE, the initial
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value also specifies the symbolic type of the value, so in this case, ExpoSE
will only generate new numeric values for A.

In ExpoSE, symbols are propagated using concolic values. A concolic
value is a object with a concrete and symbolic component. The concrete
component is the value for this path, and the symbolic portion is a SMT
expression encoding all constraints applied to that value. As the analyzer
executes a program test case, it will unwrap these values whenever they
are used. The concrete portion is used to decide how the program should
behave, while the symbolic portion is modified to represent the new con-
straints. After processing each operation, a new concolic value is returned,
representing the result of the action. In the execution of line 1 in the pro-
gram above the value of a will be equal to the concolic value Concolic

(10,A). Then, on line 2, when we apply the binary operation a > 5, this
value will be unwrapped. The concrete value, 10, will be used to com-
pute the concrete result, true, and the symbolic portion will be updated to
represent this constraint. Hence, this binary operation will yield the value
Concolic(true, A > 5) for the variable b.

When executing a conditional operation with a symbolic value, we
again unwrap the concolic value. In this case, however, the symbolic rep-
resentation is used to develop the symbolic path condition. In our exam-
ple, this first occurs on line 3. Here, as we take apart the concolic value
stored in b, we use the concrete value true to decide which side of the con-
dition to take for this test case. We also add the symbolic representation
of this value, A > 5, as an assertion to our path condition, representing the
impact that this value has had on program control flow. This design lets
us propagate symbolic state through a real JavaScript interpreter.
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3.7.2 Overview

Primitive JavaScript types can be directly translated into SMT formulas
supported by many off-the-shelf SMT solvers. Values such as null and
undefined do not require complex translation as they can only be a single
value. This leaves booleans, numbers and strings to be encoded. In this
section we describe the framework ExpoSE uses to convert values into
SMT constraints at runtime.

Symbols are propagated through test executor instances by the use of
concolic values. A concolic value replaces the JavaScript value for each
of the symbolic inputs to the program and is composed of a concrete
JavaScript value and a symbolic portion which represents it in SMT. The
initial test case seeds the concrete portion of symbolic inputs with values
provided by the test harness. All later test cases use values provided by
the SMT solver.

As each operation occurs in the program under test the test executor
is informed through instrumented callbacks (Section 3.6). If any operand
is concolic then it is treated by a symbolic interpreter in the test execu-
tor rather than the native JavaScript interpreter. In the case of binary and
unary operations the symbolic interpreter first computes the concrete re-
sult. Next, it generates a symbolic representation of the operation using
the ExpoSE SMT bindings. If any operand is not concolic then it is up-
graded, turned into a concolic value with a constant symbolic portion. The
result of such operations is itself concolic, and will be returned to the pro-
gram under test where it can continue to propagate through the program.
For operations such as getField and setField the symbolic interpreter
may choose to apply some custom reasoning depending on the field re-
quested and the operand types. This is further detailed in our support for
strings (Section 3.7.3), arrays, and objects (Section 3.7.4).

The development of the symbolic path condition is driven by treat-
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ment of conditional operations. As a conditional operation is executed the
operand is checked and, if symbolic, the symbolic interpreter is used to
update the symbolic path condition. First non-boolean conditions are co-
erced by symbolic type coercion. Next, the concrete value of the operand
is evaluated to decide which branch of the conditional operation this test
case will take. This information is used to update the symbolic path con-
dition of the program so that it is consistent with the concrete path taken
by the test case.

For performance reasons ExpoSE uses real values to represent numeric
JavaScript values symbolically. Real values differ from JavaScript numeric
values in subtle ways. A real value has a different range, and no concept
of Infinity or NaN. These differences do not present issues in the major-
ity of applications, but may lead to divergence between the concrete and
symbolic state.

Concretization During execution ExpoSE may be unable to encode an
operation symbolically, either because the operation is black-box (i.e., a
native library), or too complex. In these cases, ExpoSE can concretize the
variable, deleting the symbolic component and proceeding with just the
concrete value for that path. When ExpoSE concretizes a value, the sym-
bolic component is lost, so analysis is under-approximate.

3.7.3 Strings

String solving support is a recent addition to many SMT solvers [141]. The
support allows for SMT solvers to reason about programs containing com-
plex string constraints, but representation of JavaScript strings in SMT is
not as straightforward as other primitive values. One concern is that string
concatenation is represented with a distinct operator, where previously
the + operator always evaluated to the same SMT expression regardless of
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value type. To treat this the symbolic interpreter was made type-aware.
Whenever an instruction is interpreted symbolically the concrete value of
operands is now used to select which SMT operator should be used when
encoding. Unlike other primitives, the length field of strings is dependent
on the value of the string itself. As such, the symbolic interpreter has a cus-
tom treatment for getField operations which request the length field,
returning a concolic length value composed of the concrete length and the
constraints on the string length, rather than using the concrete value. This
is important when analysing programs with checks on string lengths. For
example, when exploring the program:
1 const input = S$.symbol("input", "");

2

3 if (input.length == 5) {

4 throw "Error";

5 }

We would not be able to generate a test case which exercises the throw
operation without instrumenting the length field lookup operation.

Regular Expressions Regular expressions in JavaScript support non-
regular features such as backreferences and capture groups, but exist-
ing SMT solvers only include support for language membership queries
on purely regular languages. ExpoSE includes a rewriting for regular
expressions, allowing for symbolic representation of membership lan-
guage queries including backreferences. It also supports symbolic capture
groups. The rewriting operates by splitting each regular expression up
into a set of regular language membership queries and string constraints.
Operator matching precedence is handled through a CEGAR refinement
loop. This support is fully detailed in Chapter 4.
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3.7.4 Arrays and Objects

Objects are maps from string-based keys to values with no predefined
structure. Arrays and objects are not required to be homogeneously typed.
For example, [1, true, "Hello"] is a valid array and each element is a
different type. This design is a challenge when encoding the program in
SMT because solvers do not support these constructs, but support is es-
sential for detailed symbolic execution.

In ExpoSE, we encode arrays and objects through a layer inside the sym-
bolic interpreter. This layer simulates the behavior of symbolic objects
while keeping all underlying values homogenously typed. For homoge-
neously typed arrays (i.e., all values are of the same primitive type), we
use direct SMT encoding and in other cases, we explore objects by field
enumeration. Each putField operation handled by the symbolic inter-
preter is recorded and updates the known state. If a getField operation
requests an unknown field in the object, then a new untyped symbol is
created and returned for that field.

We describe the ExpoSE encoding for objects and arrays in more detail
in Chapter 5, where we illustrate the encoding and show how it is useful
when testing JavaScript language polyfills.

3.7.5 Untyped Symbols

Some JavaScript programs behave differently depending upon the type of
inputs. Here, we allow untyped symbolic inputs in order to explore the
program. ExpoSE supports this through untyped symbols. If a symbol is
created without a specified initial input then it is marked as untyped by
the symbolic interpreter. ExpoSE will explore operations on the symbol
as if the symbol was any of the supported symbolic types. The following
example expects a numeric input for x:
1 const x = S$.symbol(’x’);
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2 if (typeof x === "number") {

3 console.log(2 * x);

4 } else {

5 console.log("Input error: " + x);

6 }

If x is numeric then 2*x is printed to the console, otherwise an error is
printed. If the type of the symbol x is fixed then the symbol execution
would either explore the program logic or the error handler. Here the use
of an untyped symbol allows for complete exploration of this program
without prior knowledge of expected typing.

Untyped symbolic inputs are supported through base type enumera-
tion. Whenever a fresh untyped symbol is created one new test case is cre-
ated for an assignment of that symbol in each of the ExpoSE base types.
The use of untyped symbols should be limited in practice since interac-
tions between untyped symbols can cause path explosion.

3.7.6 Type Coercions

Table 3.2 details each coercion rule and its symbolic representation.
JavaScript has complex type coercion rules and direct representation of
these rules is too costly for current SMT solvers. ExpoSE supports sim-
plified type coercion rules and concretizes inputs in other cases, to avoid
hindering DSE through infeasible SMT queries.

3.8 Modelling Functions

The JavaScript specification defines a set of built in methods to be imple-
mented by each vendor. These are black-box so ExpoSE cannot instru-
ment them for symbolic execution. We concretize the inputs to these calls
because passing concolic values to these methods may break the concrete
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Table 3.2: Type Coercion Rules in ExpoSE.

Rule Type Rewriting

ToBool boolean this
number if this! = 0 then true else false
string if this! = "" then true else false
object concretize

ToNumber boolean if this then 1 else 0
number this
string concretize
object concretize

ToString boolean if this then "true" else "false"
number concretize
string this
object concretize

execution, since the black-box implementation does not know how to pro-
cess concolic values. Concretization makes analysis under-approximate,
so ExpoSE includes a set of symbolic function models for common black-
box methods. Whenever a black box method is executed the symbolic
interpreter first executes the method with concrete inputs. If a function
model exists for the method we use it to simulate the method call symbol-
ically. The concrete result from the function call and the symbolic result
of the function model are then combined into a result value. If there is no
function model for that method then only the concrete result is returned.

3.8.1 Modelled APIs

The default behaviour when executing black-box methods is concretiza-
tion so that concolic values do not break test execution. However, con-
cretization causes under-approximation and some methods are called fre-
quently, so ExpoSE models a subset of the JavaScript standard library
covering the most common method calls. A function model simulates a
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method behaviour while maintaining the symbolic state. When building
models for black-box methods we have two options, direct SMT encoding,
or reimplementation (i.e., we implement the method ourselves using op-
erations we can directly encode into SMT). We now discuss the APIs for
which ExpoSE includes built-in models.

Math In ExpoSE, we translate math functions directly into SMT. SMT
solvers include support for all methods, so a one-to-one translation from
a built-in method call to SMT is straightforward.

Strings We support the most commonly called string methods. Mod-
elling for string methods often is not straightforward since there may not
be a one-to-one translation into SMT. In these cases, we reimplement the
function using instructions that we can directly translate to SMT.

Regex We support all regular expression application methods. In the
case of straightforward methods, like test and exec, the call can be di-
rectly translated to SMT after the encoding, though a CEGAR refinement
loop built into ExpoSE may be triggered by the solver (Chapter 4). For
more complex methods, such as split and matchAll, we reimplement
the method in terms of exec. Modelling these methods requires a looped
exec operation, and so can generate an infinite number of paths when
treating an unconstrained symbolic input.

Array We include two encodings for arrays, mixed-types through an in-
termediate encoder and homogenously typed through direct translation to
SMT (Chapter 5). The dual encoding requires that each function has two
models. For most array methods function models are by reimplementa-
tion, the intermediate encoding makes calls to the symbolic object encoder
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to simulate the function model. In contrast, where possible, the homoge-
neously typed arrays reimplement the methods through operations that
can be translated directly into SMT.

JSON We support serialization of objects with symbolic components to
JSON. Symbolic serialization works through a reimplementation of the
JSON.stringify method to form a symbolic concatenation of the sym-
bolic and concrete components with the JSON syntax. For example, the
following program performs a symbolic serialization:
1 var x = X;

2 var y = { x: X };

3 var j = JSON.stringify(y);

After execution, the variable j will be the symbolic string "{\"x\":"++

X ++ "}". Symbolic serialization takes the current concrete list of fields,
and is under-approximate. We do not directly support symbolic deserial-
ization, since the complex string constraints required to symbolically rea-
son about parsing of JSON strings is too expensive for practical DSE of
most real-world programs. If symbolic reasoning of JSON parsing is de-
sired, a user of ExpoSE can replace JSON.parse with a re-implementation
in JavaScript. ExpoSE will then symbolically execute the parsing process
using its string support, exploring each of the different feasible resulting
objects, though this will increase analysis time.

3.9 Supporting Web Analysis

ExpoSE provides support for web applications through instrumentation
of a custom web browser. When adding web support for ExpoSE, the
design goal was to leverage as much of the existing design as possible.
We use our existing distributed design and a new custom web browser to
support web applications with few changes. The purpose of the custom
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web browser is twofold. It allows us to instrument all loaded JavaScript
into the program, and it enables communication with the distributor and
path generation components of ExpoSE, escaping the browser sandbox.

We redirect every request from the custom browser through an inter-
nal rewriter. Using this rewriter, we scan each request for JavaScript to
instrument. We also inject a complete version of the ExpoSE analyzer ev-
ery JavaScript environment before execution. This deployment of ExpoSE
contains all dependencies in a single file. From here, DSE is identical to
Node.js, with the distributor creating a new instance of the web browser
for each test case, but the browser requires more resources than Node.js,
and so often tuning of the distributor is required.

Web applications have no clear termination point. By default, ExpoSE
applies a 30s timeout to test case execution for web applications. We se-
lected this timeout after observing page load times when loading common
websites in ExpoSE, where it was enough time for the JavaScript that exe-
cutes as a page loads to finish executing. For more complex applications,
a developer will have to tailor ExpoSE behavior and their test harness to
their specific use-case. For example, in Chapter 6, we terminate execution
when the page onload event is triggered.

We further elaborate on our support for web applications in Chapter 6,
where we use our support for web applications to reduce performance
overhead and improve the privacy of resource dependency resolution
proxies through a constraint-based caching scheme.

3.10 Test Case Selection

In general the number of unique control flows through a program is too
large to fully explore. Instead, symbolic execution usually terminates af-
ter a time limit or goal is reached. A symbolic execution framework can
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improve its performance by prioritising test cases which are more likely to
drive execution toward a desired goal. For example, by choosing test cases
which are created from infrequently explored fork points, we are likely to
improve coverage.

ExpoSE supports the prioritisation of test cases through its Strategies
API. A strategy can be used by the test distributor in order to reorder the
queue of waiting test cases when new alternatives are added. Each time
a new set of test cases is sent to the distributor by a terminating test ex-
ecutor the active strategy is queried. A strategy has access to detailed in-
formation about each test case, including which conditional operation in
the program triggered it’s creation. It also has information about the test
execution which generated this new test case, including the program trace
and which methods and language features were used. Finally, it has ac-
cess to the entire global state of the distributor, including current coverage
information. ExpoSE includes four search strategies and uses the random
fork point strategy by default.

FIFO A simple, deterministic exploration strategy. Test cases are queued
in the order that they are created by test executor instances.

Random A completely random strategy. Whenever a new set of test
cases are added to the queue the queue is randomly shuffled. This strategy
is useful in programs where the fork point is not a useful selection criteria
but the FIFO strategy gets stuck early treating expensive test case.

Least Common Fork Point The goal of this strategy is to always prior-
itize test cases from the least explored conditional within the program.
Such as strategy should encourage test cases which explore new parts of a
program, leading to increased program coverage during analysis. When-
ever a test case is created its fork point, a unique identifier for the condi-
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tional operation which triggered its creation, is recorded. Prior to select-
ing a test case for execution the queue of waiting test cases is sorted by the
number of times that their fork point has been selected during the current
analysis and the least selected fork point is placed at the front of the queue.
As a test is selected, a counter for the number of times its fork point has
been selected is incremented.

Random Fork Point Like least common fork, the goal of random fork
point selection is to improve program coverage of symbolic execution by
avoiding sets of test cases generated at the same fork point in the program.
This strategy is similar to a strategy successfully employed in the symbolic
execution of language interpreters [20] . Here, the test case queue is peri-
odically reordered. Prior to reordering a random fork point is selected
from the list of fork points used by test cases in the queue. The queue of
waiting test cases is then sorted so that test cases created by that fork point
will be selected first. Depending on preference the list can be reordered
after each test case is selected, after a set number of test cases have been
selected, or once all test cases for that fork point have been exhausted. By
selecting a random fork point to explore we can prioritise exploration of
new parts of the program while also employing a randomized strategy
that can avoid falling into local traps.

3.11 Coverage Calculation

Program coverage metrics are often used to determine how effective anal-
ysis of a program has been. Whilst there are drawbacks with such metrics,
they often provide a reasonable intuition as to whether analysis has been
sufficient. ExpoSE supports three different code coverage metrics:
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Line Coverage Line coverage is the most straightforward coverage met-
ric supported by ExpoSE. As each line in a program is executed it is
recorded. After analysis is complete the proportion of lines covered across
all test cases is computed.

Term Coverage In some programs a single line may contain a large
amount of functionality. One example of this is chained method callbacks,
a commonly employed pattern in JavaScript programs. Term coverage
provides is a more useful metric in such cases. The metric splits each line
in a program up into individual terms, the literals and expressions which
make up each line. For example, given the following program:
1 let result = input().extract().else((error) => "default");

Here a line coverage metric would return 100% coverage, regardless of
whether the error handling code is ever executed. A term metric coverage
instead would give the proportion of terms that are executed. As such
it would return only 75% coverage if the error handler is not triggered
during analysis.

Decision Coverage Decision coverage is the proportion of the condi-
tional branches in the program control flow are taken at least once dur-
ing analysis. With such a metric, each conditional operation is split into
two possible branches, the true branch and the false branch. As a condi-
tional operation is executed the branch taken is recorded and added to the
coverage metrics. For example, given the program:
1 var x = ...;

2

3 if (x) {

4 ...

5 } else {

6 ...

7 }
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If either the true or false condition is taken during analysis, then the deci-
sion coverage would be 50%, however if test cases explore both branches
then decision coverage would be 100%.

Coverage Calculation ExpoSE generates a source map to create a rela-
tionship between the simplified terms in the instrumented program and
the original source code. Each simplified term in the instrumented pro-
gram is issued a unique identifier. Whenever an analysis callback is trig-
gered during test-case execution this identifier is recorded, along with the
branch taken if the operation was conditional. Upon test case termination
this information is sent back to the Distributor where the coverage calcu-
lator merges it into the global coverage state. The source map is then used
to compute the coverage of the original program from the map of reached
instrumented terms.

3.12 Evaluation

We now set out to evaluate the practicality of ExpoSE on real-world
JavaScript programs. In particular, we aim to find out if the steps taken in
design successfully mitigate the limitations of prior work, focusing on ap-
plication compatibility, and whether the default search strategy selected is
the correct choice. We set out to answer the following research questions:

(RQ1) Does compatibility with ES7 really matter?

(RQ2) Does test case selection strategy impact analysis performance?

We answer RQ1 through an evaluation comparing the ExpoSE instrumen-
tation to Jalangi2 (Section 3.12.1). RQ2 is evaluated through an evalua-
tion of several test case selection strategies on real world JavaScript li-
braries (Section 3.12.2).
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3.12.1 Application Support

A principle goal in our design for ExpoSE was to maintain a high degree
of compatibility with modern JavaScript. To improve our compatibility,
we implemented an extra step in instrumentation which allows us to ana-
lyze software written with the ES7 specification. To measure how much of
an impact ES7 support has, we now symbolically execute the 1,000 most
depended on JavaScript packages on NPM with support for ES7 enabled
and disabled. Here, we answer RQ1, showing that ES7 support increases
supported libraries by 24%.

Methodology

We selected the latest version of the 1,000 most depended NPM libraries.
We execute each library with ExpoSE twice, using an automatically gen-
erated harness. One execution includes our modified Jalangi2 instrumen-
tor, whilst the other uses the latest stock version of Jalangi2. The number
of JavaScript source files successfully instrumented by each execution is
collected. If the number of files instrumented is more than zero then it
is counted as successful. While we cannot test if a package is fully sup-
ported since we do not know if the published package has errors or if the
package is designed to be imported, a number greater than zero means
that the library is at least partially supported by ExpoSE. We do not need
to re-execute tests since instrumentation of programs is deterministic, so
while coverage may change between executions due to test case selection,
it will not if instrumentation failed.

Results

Table 3.3 gives the result of our compatibility analysis. We find that our
custom instrumentation increases compatibility with the top 1000 Node.js
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Table 3.3: Compatibility with the top 1,000 most depended libraries on
NPM.

# Libraries # Supported (ES5) % # Supported (ES7) %

1,000 591 59% 883 83%

applications by 24%. We do not achieve complete compatibility with NPM
packages but not all NPM packages are importable, as some are CLI tools
or meta packages which will be marked as unsupported. Further, our im-
provements to Jalangi2 are incomplete so some files will fail to instrument.
As such, we answer RQ1 in the affirmative, ES7 support significantly im-
proves compatibility with real-world JavaScript programs.

Conclusions

Addressing RQ1, we see a 24% increase in library compatibility in the
wild, from 59% to 83%, a notable increase in library compatibility. The
analysis was done using an automatic harness using unknown libraries, so
true library support is likely to be even higher. Overall, ExpoSE is highly
compatible with modern JavaScript, and while further refinement may im-
prove compatibility in complex applications, ExpoSE will is able to treat
the majority of real-world JavaScript problems without issue.

3.12.2 Test Case Selection

ExpoSE has several test case selection strategies, and uses the random fork
point strategy by default. To justify this choice, we evaluate multiple pack-
ages to see how our default selection strategy can impact coverage. We test
each of the strategies described in Section 3.10 on several widely depended
on libraries and collect the coverage over time for each test strategy and
use this to show that our random fork point strategy consistently produces
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Table 3.4: Total coverage for each search strategy.

Library Deterministic Random Least Common Fork Random Fork

minimist 56% 62% 68% 68%
validator 67% 66% 72% 73%
body-parser 33% 34% 32% 34%

uuid 65% 63% 65% 65%
q 37% 37% 48% 49%

less 21.6% 21.7% 21.5% 21.5%

high coverage. Answering RQ2, we find that test case selection strategy
has a notable impact on the peformance of symbolic execution, and that
our default strategy produces the best results.

Methodology

If we tested a random sample of JavaScript programs we would not be
able to identify if a change in coverage was the result of bugs or non-
determinism in ExpoSE or the selection strategy. To avoid the problem,
we selected six libraries for which we known ExpoSE has good support
and that produce fairly consistent results across tests in order to test only
the impact of the selection strategy on program coverage. Each library was
executed with a five minute timeout using an automatically generated test
harness. ExpoSE was executed once for each of the four strategies. We
collected term coverage and test execution rate across executions. Each
test was repeated five times and the median test case was selected, though
in practice only the random strategy showed notable variation.

Results

Table 3.4 details coverage of the executions. We find that in general the
random fork point search strategy yields the highest coverage, although
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gains are often small when compared to the least common fork point strat-
egy. The deterministic and random strategies generally perform poorly
over time, plateauing with occasional coverage increases.

To further illustrate how search strategies impact coverage we now
present Figure 3.2, Figure 3.3 and Figure 3.4. Each figure show the first
hundred seconds of coverage and test execution rate for each strategy on
three of our tested libraries. From this we see the frequency of cover-
age increases. We found that a purely deterministic strategy performed
very poorly over time, with few test cases increasing program coverage.
This can be attributed the strategy executing many similar test cases, as
many subsequent cases will be minor variation on the previous as they
were generated by the same path. The random strategy also performed
poorly, except in the case of Figure 3.3, where it performed best of the four
strategies. Even in this case, however, we would not suggest its use as the
default search strategy due to the unpredictability. The random strategy
was also the only strategy to saturate the machine with long running test
cases, as shown by the drop in test execution rate in Figure 3.2. Both of
our fork point base strategies performed well, however the random fork
point strategy tended to slightly outperform the deterministic fork point.

Conclusions

In our evaluation we observed that the test case selection strategy im-
pacts both overall coverage and the frequency with which the DSE en-
gine plateaus. As such, we answer RQ2 in the affirmative, in time-limited
scenarios prioritising test cases will impact overall performance of DSE.
While overall program coverage is not always the metric analyzers will
want to optimise for, it is generally a good barometer for DSE engine per-
formance.

Discussing our use of the random fork point selection strategy by de-
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(d) Random Test Case Search Strategy.

Figure 3.2: ExpoSE search strategy performance on minimist.
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(d) Random Test Case Search Strategy.

Figure 3.3: ExpoSE search strategy performance on body-parser.
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(d) Random Test Case Search Strategy.

Figure 3.4: ExpoSE search strategy performance on validator.
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fault in ExpoSE, the strategy consistently reached the highest program
coverage in the libraries tested. Further, we observed that the strategy hit
a coverage plateau less frequently than others in practice, leading to more
linearity in coverage increases through symbolic execution. Most users of
DSE will prefer maximized program coverage when analyzing their pro-
gram. As such, the random fork point strategy is a good default strategy
for ExpoSE.
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4 Sound Regular Expression Semantics for ExpoSE

In this chapter we implement a critical missing feature in ExpoSE, sup-
port for modern regular expressions. Our new encoding supports all ES6
JavaScript features, including capture groups, backreferences, assertions,
and word boundaries. We scanned NPM, a popular JavaScript package
repository, and found that 34% of all packages contain regular expressions,
demonstrating that support is crucial. We show that our encoding has a
notable impact on DSE performance, increasing coverage by up to 1,338%.

Prior Appearances This work was published at the PLDI conference in
2019. It is a joint work with Duncan Mitchell of Royal Holloway, Univer-
sity of London, and Johannes Kinder of Research Institute CODE, Bun-
deswehr University Munich. My contributions to this work include the
design, CEGAR loop, implementation and evaluation. I also jointly helped
develop the formal encoding, particularly focusing on the practical limita-
tions.

4.1 Introduction

Regular expressions are popular with developers for matching and substi-
tuting strings and are supported by many programming languages. For
instance, in JavaScript, one can write /goo+d/.test(s) to test whether the
string value of s contains "go", followed by one or more occurrences of
"o" and a final "d". Similarly, s.replace(/goo+d/,"better") evaluates to a
new string where the first such occurrence in s is replaced with the string
"better".

Several testing and verification tools include some degree of support
for regular expressions because they are so common [75, 130, 111, 128,
79]. SMT solvers support theories for strings and classical regular expres-
sions [77, 76, 3, 2, 128, 139, 141, 16, 140, 42], which allow expressing con-
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straints such as s ∈ L(goo+d) for the test example above. Although any
general theory of strings is undecidable [15], many string constraints are
efficiently solved by modern SMT solvers.

SMT solvers support regular expressions in the language-theoretical
sense, but “regular expressions” in programming languages like Perl or
JavaScript—often called regex, a term we also adopt from now on—are
not limited to representing regular languages [6]. For instance, the expres-
sion /<(\w+)>.*?<\/\1>/ parses any pair of matching XML tags, which is a
context-sensitive language (because the tag is an arbitrary string that must
appear twice). Problematic features that prevent a translation of regexes to
the word problem in regular languages include capture groups (the paren-
theses around \w+ in the example above), backreferences (the \1 referring
to the capture group), and greedy/non-greedy matching precedence of
subexpressions (the .*? is non-greedy). In addition, any such expression
could also be included in a lookahead (?=), which effectively encodes in-
tersection of context sensitive languages. In tools reasoning about string-
manipulating programs, these features are usually ignored or imprecisely
approximated. This is a problem, because they are widely used, as we
demonstrate in Section 4.7.1.

For ExpoSE this lack of support can lead to loss of coverage or missed
bugs where constraints would have to include membership in non-regular
languages. The difficulty arises from the typical mixing of constraints
in path conditions—simply generating a matching word for a standalone
regex is easy (without lookaheads). For ES6 regular expressions, matching
precedence with capture groups is particularly tricky to soundly encode.

In this chapter, we make our second significant contribution, a novel
scheme for supporting ECMAScript regex in ExpoSE and show that it is
effective in practice (C2). In particular, we make the following contribu-
tions:
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• We fully model ES6 regex in terms of classical regular languages
and string constraints (Section 4.4) and cover several aspects miss-
ing from previous work [111, 112, 79]. We introduce the notion of
a capturing language to make the problem of matching and capture
group assignment self-contained.

• We introduce a counterexample-guided abstraction refinement (CE-
GAR) scheme to address the effect of greediness on capture
groups (Section 4.5), which allows us to deploy our model in DSE
without sacrificing soundness for under-approximation.

• We present the first systematic study of JavaScript regexes, examin-
ing feature usage across 415,487 packages from the NPM software
repository. We show that non-regular features are widely used (Sec-
tion 4.7.1).

4.2 ECMAScript Regex

We review the ES6 regex specification, focusing on differences to classi-
cal regular expressions. We begin with the regex API and its matching
behavior (Section 4.2.1) and then explain capture groups (Section 4.2.2),
backreferences (Section 4.2.3), and operator precedence (Section 4.2.4). ES6
regexes are comparable to those of other languages but lack Perl’s recur-
sion and lookbehind and do not require POSIX-like longest matches.

4.2.1 Methods, Anchors, Flags

A classical regular expression defines a regular language; deciding mem-
bership of a word in that language is independent from any implemen-
tation details. However, most implementations of regular expression are
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Table 4.1: JavaScript regular expression API.

Method Description Global Flag

test Returns true if the regular expression
matches its argument and false oth-
erwise.

Starts at lastIndex, up-
dates it to the first index
after the matched sub-
string (Section 4.2.1).

search Returns the index of the first matching
substring of the given regular expres-
sion, or −1 if no match.

No effect.

exec Returns an array of the matching
substring and all captures when the
regular expression matches the given
string; returns null otherwise.

Starts at lastIndex and
updates it to the first
index after the matched
substring.

match Returns an array of the matching sub-
string and all captures when the given
regular expression matches the string;
returns null otherwise.

Returns an array with all
matching substrings but
no captures.

replace Replaces the first substring matching
the given regular expression with the
given string.

Replaces all substrings.

split Splits a string into an array of sub-
strings using the given regular expres-
sion as separator.

No effect.
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more expressive and expose internals of the matching process. In this sec-
tion, we explain parts of the JavaScript API for regular expressions which
affect our modeling. Other languages have different APIs, but generally
provide similar facilities.

ES6 regexes are RegExp objects, created from literals or the RegExp con-
structor. Programs can use regular expressions through the methods
shown in Table 4.1. RegExp objects have two methods, test and exec

, which expect a string argument; String objects offer the match, split,
search and replace methods that expect a RegExp argument.

A regex accepts a string if any portion of the string matches the expres-
sion, i.e., it is implicitly surrounded by wildcards. The relative position in
the string can be controlled with anchors, with ^ and $ matching the start
and end, respectively.

Flags in regexes can modify the behavior of matching operations. The
ignore case flag i ignores character cases when matching. The multiline flag
m redefines anchor characters to match either the start and end of input
or newline characters. The unicode flag u changes how unicode literals are
escaped within an expression. The sticky flag y forces matching to start at
RegExp.lastIndex, which is updated with the index of the previous match.
Therefore, RegExp objects become stateful as seen in the following example:
1 r = /goo+d/y;

2 r.test("goood"); // true; r.lastIndex = 6

3 r.test("goood"); // false; r.lastIndex = 0

The meaning of the global flag g varies. It extends the effects of match and
replace to include all matches on the string and it is equivalent to the
sticky flag for the test and exec methods of RegExp.

4.2.2 Capture Groups

Parentheses in regexes not only change operator precedence (e.g., (ab)*
matches any number of repetitions of the string "ab" while ab* matches
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the character "a" followed by any number of repetitions of the character "
b") but also create capture groups. Capture groups are implicitly numbered
from left to right by order of the opening parenthesis. For example, /a|((
b)*c)*d/ is numbered as /a|(1(2b)*c)*d/. Where only bracketing is re-
quired, a non-capturing group can be created by using the syntax (?: . . . ).

For regexes, capture groups are important because the regex engine will
record the most recent substring matched against each capture group. Cap-
ture groups can be referred to from within the expression using backref-
erences (see Section 4.2.3). The last matched substring for each capture
group is also returned by some of the API methods. In JavaScript, the re-
turn values of match and exec are arrays, with the whole match at index
0 (the implicit capture group 0), and the last matched instance of the ith

capture group at index i. In the example above, "bbbbcbcd".match(/a|((b
)*c)*d/) will evaluate to the array ["bbbbcbcd", "bc", "b"].

4.2.3 Backreferences

A backreference in a regex refers to a numbered capture group and will
match whatever the engine last matched the capture group against. For
example, expression /(a|b)\1/ will match the strings "aa" or "bb", with
"a" or "b" stored in the capture group, respectively, but not "ab" or "ba".
In general, the addition of backreferences to regexes makes the accepted
languages non-regular [6].

Backreferences refer to the most recent matched substring of the ref-
erenced capture group; Inside quantifiers (Kleene star, Kleene plus, and
other repetition operators), the string matched by the backreference can
change across multiple matches. For example, the regex /((a|b)\2)+/ can
match the string "aabb", with the backreference \2 being matched twice:
the first time, the capture group contains "a", the second time it contains
"b". This logic applies recursively, and it is possible for backreferences to
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Table 4.2: Regular expression operators, separated by classes of prece-
dence.

Operator Name Rewriting

(r) Capturing parentheses
\n Backreference
(?:r) Non-capturing parentheses
(?=r) Positive lookahead
(?!r) Negative lookahead
\b Word boundary
\B Non-word boundary

r * Kleene star
r *? Lazy Kleene star
r + Kleene plus r *r

r +? Lazy Kleene plus r *?r

r {m,n} Repetition rn| . . . |rm

r {m,n}? Lazy repetition rm| . . . |rn

r? Optional r|ε

r?? Lazy optional ε|r

r1r2 Concatenation

r1|r2 Alternation

in turn be part of outer capture groups.

4.2.4 Operator Evaluation

We explain the operators of interest for this chapter in Table 4.2; the im-
plementation described in Section 4.6 supports the full ES6 syntax [38].
Some operators can be rewritten into semantically equivalent expressions
to reduce the number of cases to handle (shown in the Rewriting column).

Regexes distinguish between greedy and lazy evaluation. Greedy op-
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erators consume as many characters as possible such that the entire reg-
ular expression still matches; lazy operators consume as few characters
as possible. This distinction—called matching precedence—is unnecessary
for classical regular languages, but does affect the assignment of capture
groups and therefore backreferences.

Zero-length assertions or lookarounds do not consume any characters but
still restrict the accepted word, enforcing a language intersection. Posi-
tive or negative lookaheads can contain any regex, including capture groups
and backreferences. In ES6, lookbehind is only available through \b (word
boundary), and \B (non-word boundary), which are commonly used to
only (or never) match whole words in a string.

4.3 Overview

In an overview of our approach, we now define the word problem for
regex (Section 4.3.1) and how it arises in DSE (Section 4.3.2). We intro-
duce our model for regex by example (Section 4.3.3) and explain how to
eliminate spurious solutions by refinement (Section 4.3.4).

4.3.1 The Word Problem and Capturing Languages

For any given classical regular expression r, we write w ∈ L(r) whenever
w is a word within the (regular) language generated by r. For a regex R,
we also need to record values of capture groups within the regex. To this
end, we introduce the following notion:

Definition 1 (Capturing Language). The capturing language of a regex R,
denoted Lc(R), is the set of tuples (w, C0, . . . , Cn) such that w is a word of
the language of R and each C0, . . . , Cn is the substring ofwmatched by the
corresponding numbered capture group in R.
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1 let timeout = ’500’;
2 for (let i = 0; i < args.length; i++) {
3 let arg = args[i];
4 let parts = /<(\w+)>([0-9]*)<\/\1>/.exec(arg);
5 if (parts) {
6 if (parts[1] === "timeout") {
7 timeout = parts[2];
8 }
9 ...
10 }
11 }
12 assert(/^[0-9]+$/.test(timeout) == true);

Listing 1: Code example using regex.

A word w is therefore matched by a regex R ⇐⇒ ∃C0, . . . , Cn :

(w, C0, . . . , Cn) ∈ Lc(R). It is not matched if and only if ∀C0, . . . , Cn :

(w, C0, . . . , Cn) 6∈ Lc(R). For readability, we will usually omit quantifiers
for capture variables where they are clear from the context.

4.3.2 Regex In Dynamic Symbolic Execution

The code in Listing 1 parses numeric arguments between XML tags from
its input variable args, an array of strings. The regex in line 4 breaks each
argument into two capture groups, the tag and the numeric value (parts
[0] is the entire match). When the tag is “timeout”, it sets the timeout

value accordingly (lines 6–7). On line 12, a runtime assertion checks that
the timeout value is truly numeric after the arguments have been pro-
cessed. The assertion can fail because the program contains a bug: the
regex in line 4 uses a Kleene star and therefore also admits the empty
string as the number to set, and JavaScript’s dynamic type system will
allow setting timeout to the empty string.

DSE finds such bugs by systematically enumerating paths, including
the failure branches of assertions [49]. Without support for regex, a DSE
engine will concretize arg on the call to exec, assigning the concrete result to
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parts. With all subsequent decisions concrete, the path condition becomes
pc = true and the engine will be unable to cover more paths and find the
bug.

Implementing regex support ensures that parts is symbolic, i.e., its ele-
ments are represented as formulas during symbolic execution. The path
condition for the initial path thus becomes pc = (args[0], C0, C1, C2) 6∈
Lc(R) where R = <(\w+)>([0-9]*)<\/\1>. Negating the only clause
and solving yields, e.g., args[0] = "<a>0</a>". DSE then uses this in-
put assignment to cover a second path with pc = (args[0], C0, C1, C2) ∈
Lc(R) ∧ C1 6= "timeout". Negating the last clause yields, e.g., “<timeout
>0</timeout>”, entering line 7 and making timeout and therefore the as-
sertion symbolic. This leads to pc = (args[0], C0, C1, C2) ∈ Lc(R) ∧ C1 =

"timeout" ∧ (C2, C ′0) ∈ Lc(^[0-9]+$), which, after negating the last clause,
triggers the bug with the input “<timeout></timeout>”.

4.3.3 Modeling Capturing Language Membership

Capturing language membership constraints in the path condition cannot
be directly expressed in SMT. We model these in terms of classical regular
language membership and string constraints. For a given ES6 regex R,
we first rewrite R (see Table 4.2) in atomic terms only, i.e., |, *, capture
groups, backreferences, lookaheads, and anchors. For consistency with
the JavaScript API, we also introduce the outer capture group C0. Consider
the regex R = (?:a|(b))\1. After preprocessing, the capturing language
membership problem becomes

(w, C0, C1) ∈ Lc((?:.|\n)*?((?:a|(b))\1)(?:.|\n)*?),

a generic rewriting that allows for characters to precede and follow the
match in the absence of anchors.
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We recursively reduce capturing language membership to regular mem-
bership. To begin, we translate the purely regular Kleene stars and the
outer capture group to obtain

(w, C0, C1) ∈Lc(R) =⇒ w = w1 ++w2 ++w3

∧w1 ∈ L((:?.|\n)*?)

∧ (w2, C1) ∈ Lc((?:a|(b))\1)∧ C0 = w2
∧w3 ∈ L((:?.|\n)*?),

where ++ is string concatenation. We continue by decomposing the regex
until there are only purely regular terms or standard string constraints.
Next, we translate the nested capturing language constraint

(w2, C1) ∈ Lc((?:a|(b))\1) =⇒
w2 = w

′
1 ++w

′
2 ∧ (w ′1, C1) ∈ Lc(a|(b))∧ (w ′2) ∈ Lc(\1).

When treating the alternation, either the left is satisfied and the capture
group becomes undefined (which we denote as ∅), or the right is satisfied
and the capture is locked to the match, which we model as

(w ′1 ∈ L(a)∧ C1 = ∅)∨ (w ′1 ∈ L(b)∧ C1 = w ′1).

Finally we model the backreference, which is case dependent on whether
the capture group it refers to is defined or not:

(C1 = ∅ =⇒ w ′2 = ε)∧ (C1 6= ∅ =⇒ w ′2 = C1).
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Putting this together, we obtain a model for R:

(w, C0, C1) ∈ Lc(R) =⇒ w = w1 ++w
′
1 ++w

′
2 ++w3

∧ C0 = w ′1 ++w ′2
∧
(
(w ′1 ∈ L(a)∧ C1 = ∅)∨ (w ′1 ∈ L(b)∧ C1 = w ′1)

)
∧ (C1 = ∅ =⇒ w ′2 = ε)∧ (C1 6= ∅ =⇒ w ′2 = C1)

∧w1 ∈ L((:?.|\n)*?)∧w3 ∈ L((:?.|\n)*?).

4.3.4 Refinement

Because of matching precedence (greediness), these models permit assign-
ments to capture groups that are impossible in real executions. For exam-
ple, we model /^a*(a)?$/ as

(w, C0, C1) ∈ Lc(/^a*(a)?$/) =⇒ w = w1 ++w2

∧w1 ∈ L(a*)∧w2 ∈ L(a|ε)∧ C0 = w∧ C1 = w2.

This allows C1 to be either a or the empty string ε, i.e., the tuple ( "aa",

"aa", "a") would be a spurious member of the capturing language under
our model. Because a* is greedy, it will always consume both characters
in the string "aa"; therefore, (a)? can only match ε. This problem posed
by greedy and lazy operator semantics remains unaddressed by previous
work [111, 128, 79, 112]. To address this, we use a counterexample-guided
abstraction refinement scheme that validates candidate assignments with
an ES6-compliant matcher. Continuing the example, the candidate ele-
ment ("aa", "aa", "a") is validated by running a concrete matcher on the
string "aa", which contradicts the candidate captures with C0 = "aa" and
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C1 = ε. The model is refined with the counter-example to the following:

w =w1 ++w2

∧w1 ∈ L(a*)∧w2 ∈ L(a|ε)∧ C0 = w∧ C1 = w2
∧
(
w = "aa" =⇒ (C0 = "aa"∧ C1 = ε)

)
.

We then generate and validate a new candidate (w, C0, C1) and repeat the
refinement until a satisfying assignment passes the concrete matcher. This
scheme is discussed in detail in Section 4.5, along with a discussion on
soundness and possible non-termination.

4.4 Modeling ES6 Regex

We present a general model for ECMAScript 6 regular expressions, ex-
tending substantially on previous work on capture groups only [111] and
preliminary work on backreferences [79]. We now detail the process of
modeling capturing languages. After preprocessing a given ES6 regex R to
R ′ (Section 4.4.1), we model constraints (w, C0, . . . , Cn) ∈ Lc(R ′) by recur-
sively translating terms in the abstract syntax tree (AST) of R ′ to classical
regular language membership and string constraints (Section 4.4.2–4.4.3).
Finally, we show how to model negated constraints (w, C0, . . . , Cn) 6∈
Lc(R ′) (Section 4.4.5).

4.4.1 Preprocessing

For illustrative purposes, we make the concatenation R1R2 of terms R1, R2
explicit as the binary operator R1 ·R2. Any regex can then be split into com-
binations of atomic elements, capture groups and backreferences (referred
to collectively as terms, in line with the ES6 specification [38]), joined by ex-
plicit operators. Using the rules in Table 4.2, we rewrite any R to an equiv-
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alent regex R ′ containing only alternation, concatenation, Kleene star, cap-
ture groups, non-capturing parentheses, lookarounds, and backreferences.
We rewrite any remaining lazy quantifiers to their greedy equivalents, as
the models are agnostic to matching precedence (this is dealt with in re-
finement).

Note that the rules for Kleene plus and repetition duplicate capture
groups, e.g., rewriting /(a){1,2}/ to /(a)(a)|(a)/ adds two capture
groups. We therefore explicitly relate capture groups between the original
and rewritten expressions. When rewriting a Kleene plus expression S+
containing K capture groups, S*S has 2K capture groups. For a constraint
of the form (C1, . . . , CK) ∈ Lc(S+), the rewriting yields

(C0, C1,1, . . . , CK,1, C1,2, . . . , CK,2) ∈ Lc(S*S).

Since S*S contains two copies of S, Ci,j corresponds to the ith capture in
the jth copy of S in S*S. We express the direct correspondence between
captures as

(w, C0, C1, . . . , CK) ∈ Lc(S+) ⇐⇒
(w, C0, C1,1, . . . , CK,1, C1,2, . . . , CK,2) ∈ Lc(S*S)

∧∀i ∈ {1, . . . , K}, Ci = Ci,2.

For repetition, if S{m,n} hasK capture groups, then S ′ = Sn | . . . | Sm has
K
2 (n+m)(n−m+1) captures. In S ′, suppose we index our captures as Ci,j,k
where i ∈ {1, . . . , K} is the index of the capture group in S, j ∈ {0, . . . , n−m}

denotes which alternate the capture group is in (0 being the rightmost),
and k ∈ {0, . . . ,m + j − 1} indexes the copies of S within each alternate.
Intuitively, we pick a single x ∈ {0, . . . , n − m} that corresponds to the
first satisfied alternate. Comparing the assignment of captures in S{m,n}
to S ′, we know that the value of the capture is the last possible match, so
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Ci = Ci,x,m+x−1 for all i ∈ {1, . . . , K}. Formally, this direct correspondence
can be expressed as

(w,C0, C1, . . . , CK) ∈ Lc(S{m,n}) ⇐⇒
(w, C0, C1,0,0, . . . , CK,n−m,n) ∈ Lc(Sn | . . . | Sm)

∧∃x ∈ {0, . . . , n−m} :(
(w, C0, C1,x,0, . . . , CK,x,m+x−1) ∈ Lc(Sm+x)

∧ ∀x ′ > x, (w, C0, C1,x ′,0, . . . , CK,x ′,m+x ′−1) 6∈ Lc(Sm+x ′)

∧ ∀i ∈ {1, . . . , K}, Ci = Ci,x,m+x−1

)
.

4.4.2 Operators and Capture Groups

Table 4.3: Models for regex operators.

Operation t Overapproximate Model for
(w, Ci, ..., Ci+k) ∈ Lc(t)

Alternation t1|t2

(
(w, Ci, ..., Ci+j) ∈ Lc(t1)

∧ Ci+j+1 = ... = Ci+k = ∅
)

∨
(
(w, Ci+j+1, ..., Ci+k) ∈ Lc(t2)∧

Ci = ... = Ci+j = ∅
)

Concatenation t1 · t2

w =w1 ++w2

∧(w1, Ci, ..., Ci+j) ∈ Lc(t1)

∧(w2, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

Backreference-
free Quantifica-
tion

t1*

w = w1 ++w2 ∧w1 ∈ L(t̂1*)

∧ (w2, Ci, ..., Ci+k) ∈ Lc(t1|ε)

∧
(
w2 = ε =⇒ (w1 = ε∧ Ci = . . . = Ci+k = ∅)

)
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Positive Looka-
head

(?=t1)t2 (w, Ci, ..., Ci+j) ∈ Lc(t1.*) ∧

(w, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

Negative Looka-
head

(!=t1)t2 (w, Ci, ..., Ci+j) 6∈ Lc(t1.*) ∧

(w, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

Input Start t1^ (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈
L(. ∗ 〈)

Input Start (Mul-
tiline)

t1^ (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈
L(. ∗ 〈|\n)

Input End $t1 (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈
L(〉.∗)

Input End (Multi-
line)

$t1 (w, Ci, ..., Ci+k) ∈ Lc(t1) ∧ (w, Ci, ..., Ci+k) ∈
L(〉|\n.∗)

Word Boundary t1\b t2

w = w1 ++w2

∧ (w1, Ci, ..., Ci+j) ∈ Lc(t1)

∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

∧
((

(w1 ∈ L(.*\W)∨w1 = ε)∧w2 ∈ L(\w.*)
)

∨
(
w1 ∈ L(.*\w)∧ (w2 ∈ L(\W.*)∨w2 = ε)

))

Non-Word
Boundary

t1\B t2

w = w1 ++w2

∧ (w1, Ci, ..., Ci+j) ∈ Lc(t1)

∧ (w2, Ci+j+1, ..., Ci+k) ∈ Lc(t2)

∧
(
(w1 6∈ L(.*\W)∧w1 6= ε)∨w2 6∈ L(\w.*)

)
∧
(
w1 6∈ L(.*\w)∨ (w2 6∈ L(\W.*)∧w2 6= ε)

)
Capture Group (t1) (w, Ci+1, ..., Ci+k) ∈ Lc(t1)∧ Ci = w

Non-Capturing
Group

(?:t1) (w, Ci, ..., Ci+k) ∈ Lc(t1)

Base Case t regu-
lar

w ∈ L(t)
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Let t be the next term to process in the AST of R ′. If t is capture-free and
purely regular, there is nothing to do in this step. If t is non-regular, it
contains k+ 1 capture groups (with k≥−1) numbered i through i+ k. At
each recursive step, we express membership of the capturing language
(w, Ci, ..., Ci+k) ∈ Lc(t) through a model consisting of string and reg-
ular language membership constraints, and a set of remaining captur-
ing language membership constraints for subterms of t. We then recur-
sively model these subterms. Note that we record the locations of cap-
ture groups within the regex in the preprocessing step. When splitting t
into subterms t1 and t2, capture groups Ci, . . . , Ci+j are contained in t1 and
Ci+j+1, . . . , Ci+k are contained in t2 for some j. Each language constraint is
of the form (w ′, Cj, ..., Cj+l) ∈ Lc(t ′), where w ′ is a substring of w, the cap-
tures discussed are an incrementally indexed subset of {Ci, ..., Ci+k}, and
t ′ is a subterm of t. The models for individual operations are given in
Table 4.3; we discuss specifics of the rules below.

When matching an alternation |, capture groups on the non-matching
side will be undefined, denoted by ∅, which is distinct from the empty
string ε.

When modeling quantification t = t1∗, we assume t1 does not contain
backreferences (we address this case in Section 4.4.3). In this instance,
we model t via the expression t̂1*t1|ε, where t̂1 is a regular expression
corresponding to t1, except each set of capturing parentheses is rewrit-
ten as a set of non-capturing parentheses. In this way, t̂1 is regular (it is
backreference-free by assumption). However, t̂1*t1|ε is not semantically
equivalent to t: if possible, capturing groups must be satisfied, so t̂1* can-
not consume all matches of the expression. We encode this constraint with
the implication that t̂1* must match the empty string whenever t1|ε does.

Lookahead constrains the word to be a member of the languages of both
the assertion expression and t2. The word boundary \b is effectively a
single-character lookaround for word and non-word characters. Because
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the boundary can occur both ways, the model uses disjunction for the end
of w1 and the start of w2 being word and non-word, or non-word and
word characters, respectively. The non-word boundary \B is defined as
the dual of \b.

For capture groups, we bind the next capture variable Ci to the string
matched by t1. The ith capture group must be the outer capture and the
remaining captures Ci+1, . . . , Ci+k must therefore be contained within t1.
There is nothing to be done for non-capturing groups and recursion con-
tinues on the contained subexpression.

Anchors assert the start (^) and end ($) of input; we represent the be-
ginning and end of a word via the meta-characters 〈 and 〉, respectively.
In most instances when handling these operations, t1 will be ε; this is be-
cause it is rare to have regex operators prior to those marking the start of
input (or after marking the end of input, respectively). In both these cases,
we assert that the language defines the start or end of input—and that as
a result of this, the language of t1 must be an empty word, though the
capture groups may be defined (say through t1 containing assertions with
nested captures). We give separate rules for matching a regular expression
with the multiline flag set, which modify the behavior of anchors to accept
either our meta-characters or a line break.

4.4.3 Backreferences

Table 4.4 lists our models for different cases of backreferences in the AST
of regex R; \k is a backreference to the kth capture group of R. Intuitively,
each instance of a backreference is a variable that refers to a capture group
and has a type that depends on the structure of R.

We call a backreference immutable if it can only evaluate to a single value
when matching; it is mutable if it can take on multiple values, which is a
rare but particularly tricky case. For example, consider /((a|b)\2)+\1\2/.
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Table 4.4: Modeling backreferences.

Type of \k Capturing Language Approximation
Encoding

Empty (w) ∈ Lc(\k) Exact
w = ε

Immutable (w) ∈ Lc(\k) Over
(Ck = ∅ =⇒ w = ε)∧ (Ck 6= ∅ =⇒ w = Ck)

Immutable (w) ∈ Lc(\k*) Over
(Ck = ∅ =⇒ w = ε)∧ (Ck 6= ∅ =⇒ ∃m ≥ 0 : w = ++mi=0Ck)

Mutable
(w, Ck) ∈ Lc((?:(t1)\k)*)

t1is capture group-free
Over(

w = ε∧ Ck = ∅
)
∨
(
∃m ≥ 1 : w = ++mi=1(σi,1 ++ σi,2)

∧∀i > 1,
(
(σi,1, Ck,i) ∈ Lc(t1)∧ σi,2 = Ck,i

)
∧ Ck = Ck,m

)
Mutable

(w,Ck) ∈ Lc((?:(t1)\k)*)

t1is capture group-free
Unsound(

w = ε∧ Ck = ∅
)
∨
(
∃m ≥ 1 : w = ++mi=1(σi,1 ++ σi,2)

∧(σi,1, Ck) ∈ Lc(t1)∧ ∀i ≥ 1, (σi,1 = σ1,1 ∧ σi,2 = σ1,1)
)
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Here, the backreference \1 and the second instance of \2 are immutable.
However, the first instance of \2 is mutable: each repetition of the outer
capture group under the Kleene plus can change the value of the second
(inner) capture group, in turn changing the value of the backreference in-
side this quantification. For example, the string "aabbbbb" satisfies this
regex, but "aababaa" does not. To fully characterize these distinctions, we
introduce the following definition:

Definition 2 (Backreference Type). Let t be the kth capture group of a regex
R. Then

1. \k is empty if either k is greater than the number of capture groups in
R, or \k is encountered before t in a post-order traversal of the AST
of R;

2. \k is mutable if \k is not empty, and both t and \k are subterms of
some quantified term Q in R;

3. otherwise, \k is immutable.

When a backreference is empty, it is defined as ε, because it refers to a
capture group that either is a superterm, e.g., /(a\1)*/, or appears later in
the term, e.g., /\1(a)/.

There are two cases for immutable backreferences. In the first case, the
backreference is not quantified. In our model for R, Ck has already been
modeled with an equality constraint, so we can bind the backreference to
it. In the second case, the backreference occurs within a quantification;
here, the matched word is a finite concatenation of identical copies of the
referenced capture group. Both models also incorporate the corner case
where the capture group is ∅ due to alternation or an empty Kleene star.
Following the ES6 standard, the backreference evaluates to ε in this case.
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Mutable backreferences appear in the form (...t1...\k...)* where t1 is the
kth capture group; ES6 does not support forward referencing of backref-
erences, so in (...\k...t1...)*, \k is empty. For illustration purposes, the
fourth entry of Table 4.4 describes the simplest case for mutable backref-
erences, other patterns are straightforward generalizations. In this case,
we assume t1 is the kth capture group but is otherwise capture group-free.
We can treat the entirety of this term at once: as such, any word in the
language is either ε, or for some number of iterations, we have the con-
catenation of a word in the language of t1 followed by a copy of it. We
introduce new variables Ck,i referring to the values of the capture group
in each iteration, which encodes the repeated matching on the string until
settling on the final value for Ck. In this instance, we need not deal with
the possibility that any Ck,i is ∅, since the quantification ends as soon as t1
does not match.

Unfortunately, constraints generated from this model are hard to solve
and not feasible for current SMT solvers, because they require “guess-
ing” a partition of the matched string variable into individual and
varying components. To make solving such queries practical, we in-
troduce an alternative to the previous rule where we treat quantified
backreferences as immutable. The resulting model is shown in the
last row of Table 4.4. E.g., returning to /((a|b)\2)+\1\2/, we accept
("aaaaaaaaa", "aaaaaaaaa", "aaaa", "a"), but not ("aabbaabbb", "aabbaabbb
", "aabb", "b"). We discuss the soundness implications in Section 4.5.4.
Quantified backreferences are rare (see Section 4.7.1), so the effect is lim-
ited in practice.

4.4.4 Backreferences and Overlapping Capture Groups

We now consider the two cases for overlapping capture groups, nested
capture groups contained completely inside a parent, and overlapping
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capture groups caused by lookahead. Nested backreferences in JavaScript
are always fully enclosed by their parent. In the case of nested immutable
backreferences, we bind the final assignment of the capture group to Ck so
that it may later be referenced. Recall that we rewrite any quantified cap-
ture group to provide a single assignment for the capture group during
preprocessing(Section 4.4). When treating an immutable backreference k,
the assignment for the capture group it references has already been bound
to a globally named Ck, which is supplied to the encoder during treatment
of the backreference. This also functions for nested capture groups, which
map to a substring in their parent. For example, given the regular expres-
sion /(aa(a))+\2/, which includes an immutable backreference to a cap-
ture group defined inside another, we rewrite this regular expression to
/(?:aa(?:a))*(aa(a))\2/ during preprocessing to capture the final loop
iteration so that C1 and C2 are not quantified (Section 4.4.1). After treat-
ment we are left with w = w1 ++w2 ++w3 ++w4, where w1 ∈ L(aaa*),
w2 ∈ L(aa), w3 ∈ L(a), and w4 = C2. We also have the capture group
assignments C1 = w2 ++w3, C2 = w3. Here, we have split the regular ex-
pression so that the quantification is capture group and backreference free,
and the final loop iteration acts as a single capture group assignment for
\2. This final iteration is also used to construct the assignment for C1 and
the nested C2.

If a backreference is mutable then our encoding is under-approximate,
locking all repeats of the backreference to a single string. The regular ex-
pression /((.)\2)+/ includes a quantified mutable backreference. After
pre-processing this regular expression is rewritten to /(?:.\2)*((.)\2)/.
In this special case we permit a forward reference to C2 so that the rewrit-
ten quantification can reference the final assignment for \2. After encod-
ing this regular expression we are left with w = w1 ++w2 ++w3 where
w1 = ++ni=0wi,1 ++ C2, wi,1 ∈ L(.), allowing unlimited repeats of our quan-
tification, w2 ∈ L(.), which forms the assignment for our second capture
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group, and w3 = C2 which enforces the final backreference. We addition-
ally have the capture group constraints C1 = w2 ++w3, and C2 = w3.

When treating capture groups that overlap due to lookahead we do not
have the guarantee that capture groups will be wholly contained by each
other, there may be a partial overlap. For example, /(?=(.{4})).+\1/ will
accept any string where the first four characters are the same as the last
four, and in the case of the accepted strings less than 8 characters long
there will be some overlap between the captured string in the lookahead
and the string used by the backreference. Here, matching the string "aaaaa

" would bind the first four instances of "a", to C1, and use the last four
instances of "a" to match the backreference, with the middle three charac-
ters being used to both assign C1 and to satisfy \1. Our encoding satisfies
lookahead by generating a string that matches both the lookahead regu-
lar expression and the base regular expression and shares capture groups
between both. Assignment for capture groups in lookahead follows the
same rules as with nested capture groups, binding to a globally defined
Ck. In this case the backreference is immutable, since it references a cap-
ture group that is not quantified. We would encode this expression by first
forming the constraints for the lookahead, w1 ++w2 where w1 ∈ L(.{4})
and w2 ∈ L(.*). Here, we accept any string (since there is no $ the looka-
head implicitly accepts characters after the match), and we bind the first
four characters matched to w1. Next we encode the base regular expres-
sion by w = w3 ++w4, where w3 ∈ L(.+) and w4 = C1. After that, we en-
force that our lookahead is satisfied by asserting thatw3 ++w4 = w1 ++w2,
and we bind our capture group with the assertion that C1 = w1.

Lookahead can also be used inside quantified portions of a regular ex-
pression, such as (?:(?=(.)).)+. This is encoded in the same way as a
mutable backreference, and results in an under-approximate encoding ac-
cepting only a single assignment for any quantified capture groups, even
if they appear in a quantified lookahead.
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4.4.5 Modeling Non-Membership

The model described so far overapproximates membership of a capturing
language. We define an analogous model for non-membership of the form
∀C0, . . . , Cn : (w, C0, . . . , Cn) 6∈ Lc(R). Intuitively, non-membership models
assert that for all capture group assignments there exists some partition
of the word such that one of the individual constraints is violated. Most
models are simply negated. In concatenation and quantification, only lan-
guage and emptiness constraints are negated, so the models take the form

w = w1 ++w2

∧
(
. . . 6∈ Lc(. . .)∨ . . . 6∈ Lc(. . .)

∨ (w2 = ε∧ ¬(w1 = ε . . .))
)
.

In the same manner, the model for capture groups is

(w, Ci+1, ..., Ci+k) 6∈ Lc(t1)∧ Ci = w.

Returning to the example of Section 4.3.3, the negated model for ∀C0, C1 :

(w, C0, C1) 6∈ Lc((?:a|(b))\1) becomes

∀C0, C1 : w = w1 ++w
′
1 ++w

′
2 ++w3

∧ C0 = w ′1 ++w ′2
∧
(
¬
(
(w ′1 ∈ L(a)∧ C1 = ∅)∨ (w ′1 ∈ L(b)∧ C1 = w ′1)

)
∨ ¬(C1 = ∅ =⇒ w ′2 = ε)∨ ¬(C1 6= ∅ =⇒ w ′2 = C1)

∨w1 6∈ L((:?.|\n)*?)∨w3 6∈ L((:?.|\n)*?)
)
.
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4.5 Matching Precedence Refinement

We now explain the issue of matching precedence (Section 4.5.1) and
introduce a counterexample-guided abstraction refinement scheme (Sec-
tion 4.5.2) to address it. We discuss termination (Section 4.5.3) and the
overall soundness of our approach (Section 4.5.4).

4.5.1 Matching Precedence

The model in Tables 4.3 and 4.4 does not account for matching precedence
(see Section 4.3.4). A standards-compliant ES6 regex matcher will derive
a unique set of capture group assignments when matching a string w, be-
cause matching precedence dictates that greedy (non-greedy) expressions
match as many (as few) characters as possible before moving on to the
next [38]. These requirements are not part of our model, as encoding them
directly into SMT would require nesting of quantifiers for each operator,
making them impractical for automated solving.

4.5.2 CEGAR for ES6 Regular Expression Models

We eliminate infeasible elements of the capturing language admitted by
our model through counter example-guided abstraction refinement (CE-
GAR).

Algorithm 3 is a CEGAR-based satisfiability checker for constraints
modeled from ES6 regexes, which relies on an external SMT solver with
classical regular expression and string support and an ES6-compliant
regex matcher. The algorithm takes an SMT problem P (derived from the
DSE path condition) as a conjunction of constraints, some of which model
the m ≥ 0 original capturing language membership constraints. We num-
ber the original capturing language constraints 0 ≤ j < m so that we can
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Algorithm 3: Counterexample-guided abstraction refinement
scheme for matching precedence.

Input : Constraint problem P including models form constraints
(wj, C0,j, . . . , Cnj,j)�j Lc(Rj).

Output: null if P is unsatisfiable, or a satisfying assignment for P
otherwise

1 M := null;
2 Failed := false;
3 do
4 M := Solve(P);
5 if M = null then
6 return null;
7 Failed := false;
8 for j := 0 tom− 1 do
9 (C\

0,j, . . . , C
\
nj,j

) := ConcreteMatch(M[wj], Rj) ;
10 if (C\

0,j, . . . , C
\
nj,j

) then
11 if �j = ∈ then
12 for i := 0 to nj do
13 if C\

i,j 6= M[Ci,j] then
14 Failed := true;
15 P := P ∧ (wj = M[wj] =⇒ ∧

0≤i≤nj
Ci,j = C\

i,j) ;
16 else // Non-membership query
17 Failed := true;
18 P := P ∧ (wj 6= M[wj]);
19 else // No concrete match
20 if �j = ∈ then
21 Failed := true;
22 P := P ∧ (wj 6= M[wj]);
23 while Failed;
24 return M;
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refer to them as (wj, C0,j, . . . , Cnj,j)�j Lc(Rj), where � ∈ {∈, /∈}. The algo-
rithm returns null if P is unsatisfiable, or a satisfying assignment with
correct matching precedence.

In a loop, we first pass the problem P to an external SMT solver. The
solver returns a satisfying assignment M or null if the problem is unsat-
isfiable, in which case we are done (lines 4–6). If M is not null, the algo-
rithm uses a concrete regular expression matcher (e.g., Node.js’s built-in
matcher) to populate concrete capture variables C\i,j corresponding to the
words wj in M.

Lines 8–22 describe how the assignments of capture groups are checked
for each regular expression Rj in the original problem P. We first check
whether the concrete matcher returned a list of valid capture group as-
signments, i.e., whether the word M[wj] from the satisfying assignment
matches concretely. If it did, then wj is a member of the language gener-
ated by Rj. If �j = ∈, i.e., the membership constraint was positive, then
we must check if the capture group assignments are consistent with those
from M (line 13). If they are, we move on to the next regex, otherwise
we refine the constraint problem by fixing capture group assignments to
their concrete values for the matched word (line 15). Dually, if a modeled
non-membership constraint was satisfiable but the word from the current
satisfying assignment M[wj] did match concretely, we refine the problem
by asserting that w must not equal that word (line 18). We do the same if
M[wj] did not match concretely but came from a satisfied positive mem-
bership constraint (line 22).

If no refinement was necessary we have confirmed the overall assign-
ment satisfies P and return M (line 24). Otherwise, the loop continues
with solving the refined problem.
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4.5.3 Termination

Unsurprisingly, CEGAR may require arbitrarily many refinements on
pathological formulas and never terminate. This is unavoidable due to
undecidability [15]. In practice, we therefore impose a limit on the number
of refinements, leading to unknown as a possible third result. SMT solvers
already may timeout or report unknown for complex string formulas, so
this does not lead to additional problems in practice.

4.5.4 Soundness

Section 4.3.4 demonstrated through example approximation introduced
by using our model; in this section we clarify the relationship between this
approximation and comment on the soundness of using this model in the
analysis of programs. When constructing the rules in Tables 4.3 and 4.4,
we followed the semantics of regular expressions as laid out in the ES6
standards document [38]. The ES6 standard is written in a semi-formal
fashion, so we are confident that our translation into logic is accurate, but
cannot have formal proof. Existing attempts to encode ECMAScript se-
mantics into logic such as JSIL [17] or KJS [99] do not include regexes.

With the exception of the optimized rule for mutable backreferences, our
models are overapproximate, because they ignore matching precedence.
When the CEGAR loop terminates, any spurious solutions from overap-
proximation are eliminated. As a result, we have an exact procedure to
decide (non)-membership for capturing languages of ES6 regexes without
quantified backreferences.

In the presence of quantified backreferences, the model after CEGAR
termination becomes underapproximate. Since DSE itself is an underap-
proximate program analysis (due to concretization, solver timeouts, and
partial exploration), our model and refinement strategy are sound for DSE.
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4.6 Implementation

We now describe an implementation of our approach in ExpoSE. We ex-
plain how we implement our encoding in SMT, so that they can be solved
by Z3 (Section 4.6.1). We explain how to model the regex API with captur-
ing language membership (Section 4.6.2).

4.6.1 Using our Encoding in ExpoSE

In order to implement our encoding in ExpoSE we need to express it
in SMT. To do this, we have to relax some constraints so that the en-
coding remains practical in Z3, the SMT solver used by ExpoSE. We en-
code a regular expression into SMT on-demand during test case execution
once per regular match operation. As with our formal encoding, we split
the total match into a concatenation of smaller, purely regular, matches
so that we can uniquely reference portions of the match and add con-
straints. For each regular operation we encounter across a test case we
generate a set of symbolic strings to act as our partial match strings wi.
The strings are created by a custom regular expression parser, with each
string matching a portion of the regular expression. For example, the regu-
lar expression /^.*(aa).*$/ would be parsed into three symbolic strings,
S1, S2, S3, where S1 ∈ L(.*), S2 ∈ L(aa), S3 ∈ L(.*). Here, the total
match and C0 are equal to S1 ++S2 ++S3 and C1 is equal to S2. This con-
catenation of regular matches will match our JavaScript regular expres-
sion. We bind our set of strings to the string being matched S by asserting
S ∈ L(^.*(aa).*) =⇒ S = S1 ++S2 ++S3.

Quantified segments that are bound to capture groups are rewritten to
have a single instance of the expression in the loop repeated immediately
after the loop so that it can be directly bound to a string. For example,
(a)*\1 will be rewritten to a*(a)?\1 and encoded to S1, S2, S3 where S1 ∈

110



4.6 Implementation

L(a*), S2 ∈ L(a?), S3 ∈ L(a?). Here, we add the additional constraints
S2 = S3, to enforce the backreference, and S2 = ε =⇒ S1 = ε, since we
need prevent the solver choosing an assignment in which S1 is satisfied
but S2 is empty.

To enforce backreferences the parser will generate a series of constraints
which must be satisfied in order for the query to hold. For example,
a match on the regular expression /(aa).*\1/ will be rewritten into the
strings S1, S2, S3, where S1 ∈ L(aa), S2 ∈ L(.*), and S3 ∈ L(aa), with
the additional constraint that S1 = S3. ExpoSE will add these constraints
to the SMT problems presented to Z3, but will not try to flip these con-
straints to generate new test cases as it would with other assertions along
the path condition. When attempting to generate a string that does not
match a regular expression, we query for an assignment where the string
is not matched or any of our additional constraints is violated. For exam-
ple, to find a non-matching string for /(aa).*\1/ we would look query for
Swhere S 6= S1 ++S3 ++S3 ∨ S1 6= S3.

The principle divergence between the implementation in ExpoSE and
our encoding is the removal of quantification when treating mutable back-
references. Z3 does not perform well when constraint problems contain
quantifiers, so a direct implementation of our encoding would not be prac-
tical in cases where a backreference appears in a loop. Instead, any quanti-
fied block that contains a backreference is under-approximated to a single
repeated string. This restriction is unlikely to impact the real-world per-
formance of the model as we found that only 0.01% of JavaScript regular
expressions use quantified backreferences (Table 4.6).

Additionally, current SMT solvers do not allow for non-concrete strings
to be used as the regular language in a constraint problem and most
solvers do not perform well when string problems and existential quan-
tification are combined. This makes it difficult to encode backreferences
that occur inside quantified blocks using the encoding described in Ta-
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ble 4.4, since we need to assert that our match includes the backreference
and is valid in the regular language. We split this problem into two cases,
one where the sub-expression has a constant value, for example, /(..)
\1*/, and one where some of the matched string can vary between repeti-
tions, for example, /(..)(.\1)*/. In the case that the sub-expression can-
not change between repeats we use a model similar to the String.repeat

method, creating a new integer 0 ≤ r and then asserting that the match for
the repetition of sub-expressions is equal to r repeats of the sub-expression
match string. The case where the matching string can vary between refine-
ments is more complex. Here, we relax our constraint problem and rely on
our refinement scheme in order to find a valid solution. First, we rewrite
the regular language to allow any string in the backreference. In our ex-
ample above, we would replace /(.\1)*/ with /(.(:?.*))*/, which will
allow the SMT solver to use any string as the backreference. We then query
the SMT solver for a string that would satisfy this relaxed expression and
refine it using our CEGAR based refinement strategy. The effectiveness
of the refinement strategy can be improved by enumerating these sub-
expressions during refinement, removing the quantification entirely and
instead generating SMT problems that contain a fixed number of repeats
of the sub-expression. The refinement strategy will then change the num-
ber of repetitions until it finds a satisfying assignment or the refinement
limit is reached.

4.6.2 Modeling the Regex API

The ES6 standard specifies several methods that evaluate regexes [38]. We
follow its specified pseudocode for RegExp.exec(s) to implement match-
ing and capture group assignment in terms of capturing language mem-
bership in Algorithm 4. Notably, our algorithm implements support for
all flags and operators specified for ES6.
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RegExp.test(s) is precisely equivalent to the expression RegExp.exec(

s) !==undefined (Algorithm 5). In the same manner, one can construct
models for other regex functions defined for ES6. Our implementation
includes partial models for the remaining functions that allow effective
test generation in practice but are not semantically complete.

Algorithm 4: RegExp.exec(input)

1 input ′ := ‘〈’ + input + ‘〉’;
2 if sticky or global then
3 offset := lastIndex > 0 ? lastIndex + 1 : 0;
4 input ′ := input ′.substring(offset);
5 source ′ := ‘(:?.|\n)*?(’ + source + ‘)(:?.|\n)*?’;
6 if caseIgnore then
7 source ′ := rewriteForIgnoreCase(source ′);
8 if (input ′, C0, ..., Cn) ∈ Lc(source ′) then
9 Remove 〈 and 〉 from (input ′, C0, ..., Cn);

10 lastIndex := lastIndex + C0.startIndex + C0.length;
11 result := [C0, ..., Cn];
12 result.input := input;
13 result.index := C0.startIndex;
14 return result;
15 else
16 lastIndex := 0;
17 return undefined;

Algorithm 5: RegExp.test(input)

1 if this.exec(realInput) !== undefined then
2 return true;
3 else
4 return false;

Algorithm 4 first processes flags to begin from the end of the previous
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match for sticky or global flags, and it rewrites the regex to accept lower
and upper case variants of characters for the ignore case flag.

We introduce the 〈 and 〉 meta-characters to input which act as mark-
ers for the start and end of a string during matching. Next, if the sticky
or global flags are set we slice input at lastIndex so that the new match
begins from the end of the previous. Due to the introduction of our meta-
characters lastIndex needs to be offset by 1 if it is greater than zero. We
then rewrite the regex source to allow for characters to precede and suc-
ceed the match. Note that we use (?:.|\n)*? rather than .*? because
the wildcard . consumes all characters except line breaks in ECMAScript
regexes. To avoid adding these characters to the final match we place the
original regex source inside a capture group. This forms C0, which is de-
fined to be the whole matched string [38]. Once preprocessing is com-
plete we test whether the input string and fresh string for each capture
group are within the capturing language for the expression. If they are
then a results object is created which returns the correctly mapped cap-
ture groups, the input string, and the start of the match in the string with
the meta-characters removed. Otherwise lastIndex is reset and undefined

is returned.

4.7 Evaluation

We now empirically answer the following research questions:

(RQ1) Are non-classical regexes an important problem in JavaScript?

(RQ2) Does accurate modeling of ES6 regexes make DSE-based test gen-
eration more effective?

(RQ3) Does the performance of the model and the refinement strategy
enable practical analysis?
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We answer the first question with a survey of regex usage in the wild (Sec-
tion 4.7.1). We address RQ2 by comparing our approach against an ex-
isting partial implementation of regex support in ExpoSE [79] on a set of
widely used libraries (Section 4.7.2). We then measure the contribution
of each aspect of our approach on over 1,000 JavaScript packages (Sec-
tion 4.7.3). We answer RQ3 by analyzing solver and refinement statistics
per query (Section 4.7.4).

4.7.1 Surveying Regex Usage

We focus on code written for Node.js, a popular framework for standalone
JavaScript. Node.js is used for both server and desktop applications, in-
cluding popular tools Slack and Skype. We analyzed 415,487 packages
from the NPM repository, the primary software repository for open source
Node.js code. Nearly 35% of NPM packages contain a regex, 20% contain
a capture group and 4% contain a backreference.

Methodology We developed a lightweight static analysis that parses all
source files in a package and identifies regex literals and function calls.
We do not detect expressions of the form new RegExp(...), as they would
generally require a more expensive static analysis. Our numbers therefore
provide a lower bound for regex usage.

Results We found regex usage in JavaScript to be widespread, with
145,100 packages containing at least one regex out of a total 415,487
scanned packages. Table 4.5 lists the number of NPM packages containing
regexes, capture groups, backreferences, and backreferences appearing
within quantification. Note that a significant number of packages make
use of capture groups and backreferences, confirming the importance of
supporting them.
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Table 4.5: Regex usage by NPM package.

Feature Count %

Packages on NPM 415,487 100.0%
. . . with source files 381,730 91.9%
. . . with regular expressions 145,100 34.9%
. . . with capture groups 84,972 20.5%
. . . with backreferences 15,968 3.8%
. . . with quantified backreferences 503 0.1%

Table 4.6: Feature usage by unique regex.

Feature Total % Unique %

Total Regex 9,552,546 100% 305,691 100%
Capture Groups 2,360,178 24.71% 119,051 38.94%
Global Flag 2,620,755 27.44% 90,356 29.56%
Character Class 2,671,565 27.97% 71,040 23.24%
Kleene+ 1,541,336 16.14% 67,508 22.08%
Kleene* 1,713,713 17.94% 66,526 21.76%
Ignore Case Flag 1,364,526 14.28% 58,831 19.25%
Ranges 1,273,726 13.33% 52,155 17.06%
Non-capturing 1,236,533 12.94% 25,946 8.49%
Repetition 360,578 3.7% 17,068 5.58%
Kleene* (Lazy) 230,060 2.41% 13,250 4.33%
Multiline Flag 137,366 1.44% 10,604 3.47%
Word Boundary 336,821 3.53% 9,677 3.17%
Kleene+ (Lazy) 148,604 1.56% 6,072 1.99%
Lookaheads 176,786 1.85% 3,123 1.02%
Backreferences 64,408 0.67% 2,437 0.80%
Repetition (Lazy) 2,412 0.03% 221 0.07%
Quantified BRefs 1,346 0.01% 109 0.04%
Sticky Flag 98 <0.01% 60 0.02%
Unicode Flag 73 <0.01% 48 0.02%
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Table 4.6 reports statistics for all 9M regexes collected, giving for each
feature the fraction of expressions including it. Many regexes in NPM
packages are not unique; this appears to be due to repeated inclusion of
the same literal (instead of introduction of a constant), the use of online
solutions to common problems, and the inclusion of dependencies (fore-
going proper dependency management). To adjust for this, we provide
data for both all expressions encountered and for just unique expressions.
In both cases, there are significant numbers of capture groups, backrefer-
ences, and other non-classical features. As the occurrence rate of quanti-
fied backreferences is low, we do not differentiate between mutable and
immutable backreferences.

Conclusions Our findings confirm that regexes are widely used and of-
ten contain complex features. Of particular importance is a faithful treat-
ment of capture groups, which appear in 20.45% of the packages exam-
ined. On the flip side, since quantified backreferences make up just 0.01%
of regexes, the optimization introduced in Section 4.4.3 will rarely lead to
additional underapproximation during DSE.

4.7.2 Improvement Over State of the Art

We compare our approach against the original ExpoSE [79], which is, to
our knowledge, the only available and functional implementation of regex
support in JavaScript.

Methodology We evaluated statement coverage achieved by both ver-
sions of ExpoSE on a set of libraries, which we chose for their popular-
ity (with up to 20M weekly downloads) and use of regex. This includes
the three libraries minimist, semver, and validator, which the first ver-
sion of ExpoSE was evaluated on [79]. To fairly compare original ExpoSE
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Table 4.7: Statement coverage with our approach (New) vs. [79] (Old)
and the relative increase (+) on popular NPM packages (Weekly
downloads). LOC are lines loaded and RegEx are regular ex-
pression functions symbolically executed.

Library Weekly LOC RegEx Old(%) New(%) +(%)

babel-eslint 2500k 23047 902 21.0 26.8 27.6
fast-xml-parser 20k 706 562 3.1 44.6 1338.7
js-yaml 8000k 6768 78 4.4 23.7 438.6
minimist 20000k 229 72530 65.9 66.4 0.8
moment 4500k 2572 21 0.0 52.6 ∞
query-string 3000k 303 50 0.0 42.6 ∞
semver 1800k 757 616 51.7 46.2 -10.6
url-parse 1400k 322 448 60.9 71.8 17.9
validator 1400k 2155 94 67.5 72.2 7.0
xml 500k 276 1022 60.2 77.5 28.7
yn 700k 157 260 0.0 54.0 ∞

against our extension, we use the original automated library harness for
both. Therefore we do not take advantage of other improvements for test
generation, such as symbolic array support, which we have added in the
course of our work. We re-executed each package six times for one hour
each on both versions, using 32-core machines with 256GB of RAM, and
averaged the results. We limited the refinement scheme to 20 iterations,
which we identified as effective in preliminary testing (see Section 4.7.4).

Results Table 4.7 contains the results of our comparison. To provide an
indication of program size, we use the number of lines of code loaded at
runtime (JavaScript’s dynamic method of loading dependencies makes it
hard to determine a meaningful LOC count statically).

The results demonstrate that ExpoSE extended with our model and re-
finement strategy can improve coverage more than tenfold on our sample

118



4.7 Evaluation

of widely-used libraries. In the cases of moment, query-string, and yn, the
lack of ES6 support in the original ExpoSE prohibited meaningful analy-
sis, leading to 0% coverage. In the case of semver, we see a decrease in
coverage if stopped after one hour. This is due to the modeling of regex
increasing solving time (see also Section 4.7.4). The coverage deficit dis-
appears when executing both versions of ExpoSE with a timeout of two
hours.

Conclusions We find that our modifications to ExpoSE make test gen-
eration more effective in widely used libraries using regex. This suggests
that the new method of solving regex queries presented in this chapter has
a substantial impact on practical problems in DSE. We also see that other
improvements to ExpoSE, such as ES6 support, have affected coverage.
Therefore, we continue with an evaluation of the individual aspects of our
model.

4.7.3 Breakdown of Contributions

We now drill down into how the individual improvements in regex sup-
port are contributing to increases in coverage.

Methodology From the packages with regexes from our survey Sec-
tion 4.7.1, we developed a test suite of 1,131 NPM libraries for which Ex-
poSE is able to automatically generate a meaningful test harness. In each
of the libraries selected, ExpoSE executed at least one regex operation on
a symbolic string, which ensures that the library contains some behavior
relevant to the scope of this chapter. The test suite constructed in this man-
ner contains numerous libraries that are dependencies of packages widely
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used in industry, including Express and Lodash.1

Automatic test generation typically requires a bespoke test harness or
set of parameterized unit tests [125] to achieve high coverage in code that
does not have a simple command line interface, including libraries. Ex-
poSE’s harness explores libraries fully automatically by executing all ex-
ported methods with symbolic arguments for the supported types string,
boolean, number, null and undefined. Returned objects or functions are
also subsequently explored in the same manner.

We executed each package for one hour, which typically allowed to
reach a (potentially initial) coverage plateau, at which additional test cases
do not increase coverage further. We break down our regex support into
four levels and measure the contribution and cost of each one to line cov-
erage and test execution rate (Table 4.8). As baseline, we first execute all
regex methods concretely, concretizing the arguments and results. In the
second configuration, we add the model for ES6 regex and their methods,
including support for word boundaries and lookaheads, but remove cap-
ture groups and concretize any accesses to them, including backreferences.
Third, we also enable full support for capture groups and backreferences.
Fourth, we finally also add the refinement scheme to address overapprox-
imation.

Results Table 4.8 shows, for each level of support, the number and per-
centage of target packages where coverage improved; the geometric mean
of the relative increase in coverage; and the mean test execution rate. The
final row shows the effect of enabling full support compared to the base-
line. Note that the number of packages improved is less than the sum
of the rows above, since the coverage of a package can be improved by
multiple features.

1Raw data for the experiments, including all package names, is available at https://
github.com/ExpoSEJS/PLDI19-Raw-Data.
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Table 4.8: Breakdown of how different components contribute to testing
1, 131 NPM packages, showing number (#) and fraction (%) of
packages with coverage improvements, the geometric mean of
the relative coverage increase from the feature (Cov), and test
execution rate.

Improved Cov
Regex Support Level # % +(%)

Tests
min

Concrete Regular Expressions - - - 11.46
+ Modeling RegEx 528 46.68% +6.16% 10.14
+ Captures & Backreferences 194 17.15% +4.18% 9.42
+ Refinement 63 5.57% +4.17% 8.70

All Features vs. Concrete 617 54.55% +6.74%

In a dataset of this size that includes many libraries that make only little
use of regex, average coverage increases are expected to be small. Nev-
ertheless, we see that dedicated support improves the coverage of more
than half of packages that symbolically executed at least one regex func-
tion. As expected, the biggest improvement comes from supporting basic
symbolic execution of regular expressions, even without capture groups
or regard for matching precedence. However, we see further improve-
ments when adding capture groups, which shows that they indeed affect
program semantics. Refinement affects fewer packages, although it signif-
icantly contributes to coverage where it is required. This is because a lucky
solver may generate correct inputs on the first attempt, even in ambiguous
settings.

On some libraries in the dataset, the approach is highly effective. For
example, in the manifest parser n4mf-parser, full support improves cover-
age by 29% over concrete; in the format conversion library sbxml2json, by
14%; and in the browser detection library mario, by 16%. In each of these
packages the refinement scheme contributed to the improvement in cov-
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erage. In general, the largest increases are seen in packages that include
regular expression-based parsers.

Each additional feature causes a small decrease in average test execution
rate. Although a small fraction (∼1%) of queries can take longer than 300s
to solve, concurrent test execution prevents DSE from stalling on a single
query.

Conclusions Full support for ES6 regex improves performance of DSE of
JavaScript in practice at a cost of a 16% increase in execution time (RQ2).
An increase in coverage at lower execution rate in a fixed time window
suggests that full regular expression support increases the quality of indi-
vidual test cases.

4.7.4 Effectiveness on Real-World Queries

We now investigate the performance of the model and refinement scheme
to answer RQ3. Finally, we also discuss the refinement limit and how it
affects analysis.

Methodology We collected data on queries during the NPM experiments
(Section 4.7.3) to provide details on SMT query success rates and execution
times, as well as on the usage of the refinement scheme.

Results We found that 753 (66%) of the 1,131 packages tested executed
at least one query containing a capture group or backreference. Of these
packages, 653 (58% overall) contained at least one query to the SMT solver
requiring refinement, and 134 (12%) contained a query that reached the
refinement limit.

In total, our experiments executed 58,390,184 SMT queries to generate
test cases. As expected, the majority do not involve regexes, but they form
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Table 4.9: Solver times per package and query.

Constraint Solver Time
Packages/Queries Minimum Maximum Mean

All packages 0.04s 12h 15m 2h 34m
With capture groups 0.20s 12h 15m 2h 40m
With refinement 0.46s 12h 15m 2h 48m
Where refinement limit is hit 3.49s 11h 07m 3h 17m

All queries 0.001s 22m 26s 0.15s
With capture groups 0.001s 22m 26s 5.53s
With refinement 0.005s 18m 51s 22.69s
Where refinement limit is hit 0.120s 18m 51s 58.85s

a significant part: 4,489,581 (7.6%) queries modeled a regex, 645,295 (1.1%)
modeled a capture group or backreference, 74,076 (0.1%) required use of
the refinement scheme and 2,079 (0.003%) hit the refinement limit. The re-
finement scheme was overwhelmingly effective: only 2.8% of queries with
at least one refinement also reached the refinement limit (0.003% of all
queries where a capture group was modeled). Of the refined SMT queries,
the mean number of refinements required to produce a valid satisfying
assignment was 2.9; the majority of queries required only a single refine-
ment.

Table 4.9 details time spent processing SMT problems per-package and
per-query. We provide the data over the four key aspects of the prob-
lem: we report the time spent in the constraint solver both per package
and per query in total, as well as the time in the constraint solver for the
particularly challenging parts of our strategy. We found that the use of re-
finements increased the average per-query solving time by a factor of four;
however, this is dominated by SMT queries that hit the refinement limit,
which took ten times longer to run on average. The low minimum time
spent in the solver in some packages can be attributed to packages where
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a regular expression was encountered early in execution but limitations
in the test harness or function models (unrelated to regular expressions)
prevented further exploration.

Conclusions We find the refinement scheme is highly effective, as it
is able to solve 97.2% of encountered constraint problems containing
regexes. It is also necessary, as 10% of queries containing a capture group
had led to a spurious satisfying assignment and required refinement.

Usually, only a small number of refinements are required to produce
a correct satisfying assignment. Therefore, even refinement limits of five
or fewer are feasible and may improve performance with low impact on
coverage.

4.7.5 Threats to Validity

We now look at potential issues affecting the validity of our results, in
particular soundness, package selection, and scalability.

Soundness In addition to soundness of the model (see Section 4.5.4),
one must consider the soundness of the implementation. In the absence
of a mechanized specification for ES6 regex, our code cannot be proven
correct, so we use an extensive test suite for validation. However, assum-
ing the concrete matcher is specification-compliant, Algorithm 3 will, if it
terminates, return a specification-compliant model of the constraint for-
mula even if the implementation of Section 4.4 contains bugs. In the worst
case, the algorithm would not terminate, leading to timeouts and loss of
coverage. Bugs could therefore only have lowered the reported coverage
improvements.
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Package Selection and Harness In Section 4.7.3, we chose packages
identified in our survey (Section 4.7.1) where our generic harness encoun-
tered a regular expression within one hour of DSE. This allowed us to
focus the evaluation on regex support as opposed to evaluating the qual-
ity of the harness (and having to deal with unreachable code in packages).
Use of this harness may have limited package selection to simpler, unrep-
resentative libraries. However, we found that simple APIs do not imply
simple code: the final dataset contains several complex packages, such as
language parsers, and the types of regexes encountered were in line with
the survey results. On simple code we found that ExpoSE would often
reach 100% coverage; failure to do so was either due to the complexity of
the code or the lack of support for language features unrelated to regex
and APIs that would require additional modeling (e.g., the file system).

Scalability Scalability is a challenge for DSE in general, and is not spe-
cific to our model for regex. Empirically, execution time for a single
test (instrumentation, execution, and constraint generation) grows linearly
with program size, as does the average size of solver queries. The impact
of query length on solving time varies, but does not appear to be exac-
erbated by our regex model. In principle, our model is compatible with
compositional approaches [47, 8] and state merging [71, 10], which can
help DSE scale to large programs.

The scalability of our approach suffices for Node.js, however: JavaScript
has smaller LOC counts than, e.g., C++, and code on NPM is very modu-
lar. For instance, among the top 25 most depended-upon NPM libraries,
the largest is 30 KLOC (but contains no regex). Several packages selected
for our evaluation, such as babel-eslint, had between 20-30 KLOC and
were meaningfully explored with the generic harness.
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4.8 Related Work

In theory, regex engines can be symbolically executed themselves through
the interpreter [20]. While this removes the need for modeling, in practice
the symbolic execution of the entire interpreter and regex engine quickly
becomes infeasible due to path explosion.

There have been several other approaches for symbolic execution of
JavaScript; most include some limited support for classical regular ex-
pressions. Li et al. [75] presented an automated test generation scheme
for programs with regular expressions by on-line generation of a match-
ing function for each regular expression encountered, exacerbating path
explosion. Saxena et al. [111] proposed the first scheme to encode capture
groups through string constraints. Li and Ghosh [74] and Li, Andreasen,
and Ghosh [73] describe a custom browser and symbolic execution engine
for JavaScript and the browser DOM, and a string constraint solver PASS
with support for most JavaScript string operations. Although all of these
approaches feature some support for ECMAScript regex (such as limited
support for capture groups), they ignore matching precedence and do not
support backreferences or lookaheads.

Thomé et al. [123] propose a heuristic approach for solving constraints
involving unsupported string operations. We choose to model operations
unsupported by the solver and employ a CEGAR scheme to ensure cor-
rectness. Abdulla et al. [2] propose the use of a refinement scheme to
solve complex constraint problems, including support for context-free lan-
guages. The language of regular expressions with backreferences is not
context-free [23] and, as such, their scheme does not suffice for encoding
all regexes; however, their approach could serve as richer base theory than
classic regular expressions. Scott, Flener, and Pearson [112] suggest back-
references can be eliminated via concatenation constraints, however they
do not present a method for doing so.
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Further innovations from the string solving community, such as work
on the decidability of string constraints involving complex functions [29,
58] or support for recursive string operations [127, 126], are likely to im-
prove the performance of our approach in future. We incorporate our
techniques at the level of the DSE engine rather than the constraint solver,
which allows our tool to leverage advances in string solving techniques;
at the same time, we can take advantage of the native regular expres-
sion matcher and can avoid having to integrate implementation language-
specific details for regular expressions into the solver.

A previous survey of regex usage across 4,000 Python applications [26]
also provides a strong motivation for modeling regex. Our survey extends
this work to JavaScript on a significantly larger sample size.
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5 Systematic Generation of Conformance Tests

In this chapter, we introduce a novel approach to generate new confor-
mance tests for JavaScript standard library implementations through sym-
bolic execution of polyfills. We use this new approach to find 96,470 new
test cases, discovering bugs in a popular built-in implementation and im-
proving the overall coverage of Test262, the JavaScript conformance test
suite.

Attribution This work is currently in submission. It is a joint work with
Johannes Kinder at Research Institute CODE, Bundeswehr University Mu-
nich. I contributed to all aspects of this work.

5.1 Introduction

Smooth interoperability between interpreters by different JavaScript ven-
dors is ensured by the common ECMAScript standard and its test suite.
While there is a formally verified reference interpreter for the core lan-
guage, which closely follows the natural language specification [17], all
fully-fledged implementations in browsers and other systems rely on test
suites to ensure conformance. The main mechanism for validating confor-
mance to the ECMAScript standard is Test262 [39], a manually curated test
suite with the goal of covering all observable behavior of the ECMAScript
specification.

Because Test262 is created manually, it is likely that it does not exhaus-
tively test implementation behaviour. This can lead to interpreters which
contain legal behavior that is not exercised by Test262. When corner cases
remain untested, there is a potential for hidden divergences from the spec-
ification. DSE seems ideally suited to fill this gap and exercise hidden be-
havior. In principle, DSE allows generation of test cases for implementations
of ECMAScript language semantics.
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In this chapter, we use ExpoSE to analyze straightforward implemen-
tations of JavaScript language features to generate new test cases. These
are then executed on a portfolio of JavaScript interpreters, using a major-
ity vote to decide the correct behavior. We find that polyfills, JavaScript
implementations of built-in language features, are ideally suited for this
task: polyfills are directly executable and provide more detail than the
ECMAScript specification; at the same time, they are much more compact
than implementations in an interpreter. Since these polyfill implementa-
tions are written in JavaScript we can symbolically analyze them directly
using ExpoSE. Polyfills also have the advantage of providing a clear entry
point for each supported feature, which makes directed testing possible.
In interpreters, the implementation of language semantics is hidden be-
hind parsing and translation layers, far removed from any external entry
point that could be controlled by a test generation tool.

Entry points of polyfill code can require structured input such as ob-
jects and arrays, so we extend ExpoSE to support a dynamic encoding
approach for objects and arrays that does not require specific fields or
typing. We intercept accesses to object fields and array elements by the
JavaScript program at runtime and generate test cases for each meaning-
ful outcome, handling possible name aliasing, different field types, and
the special quirks of JavaScript arrays.

We evaluate our approach using ExpoSE. We automatically gener-
ate a rich suite of tests from the Mozilla Developer Network polyfills
(mdn-polyfills) and core-js that we run against SpiderMonkey,
Node.js, and Quickjs. In summary, in this chapter we develop a new
generic encoding for objects and arrays (C3)) and use this new support to
systematically explore polyfill implementations, finding inputs uncovered
by existing conformance suites (C4). In particular, we make the following
contributions:

131



5 Systematic Generation of Conformance Tests

• We present a methodology for automated generation of confor-
mance tests from polyfills. We employ differential testing across
multiple implementations to compensate the lack of testing oracles
(Section 5.2).

• We define a model for symbolic objects and symbolic arrays that dy-
namically synthesizes test inputs in untyped JavaScript code (Sec-
tion 5.3).

• We improve the state of the art in conformance testing of EC-
MAScript implementations through our methodology. Using our
new tests, we found 17 bugs in polyfill implementations and were
able to augment the coverage of Test262 in JavaScript interpreters by
up to 15% (Section 5.4).

5.2 Conformance Testing using PolyFills

We generate new implementation conformance tests for JavaScript inter-
preters through symbolic execution of polyfills; implementations of built-
in methods in JavaScript. Existing supplementary test suites like Test262,
the official ECMA test suite [39], are created by exploring conditions in
the specification. Since they are manually curated, bugs may be missed –
particularly when treating edge cases. Here, we use a DSE engine to au-
tomatically find subtleties of built-in implementations through symbolic
exploration of polyfills, and then apply the generated tests to other imple-
mentations, since they should all behave identically.

5.2.1 Polyfills

With each evolution of JavaScript there is a period of time where new fea-
ture support will not be ubiquitous, since each vendor will take time to
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update their implementation. To remedy this, polyfills, short programs
which implement built-in methods, have become common. A polyfill will
inject a built-in into the standard library at runtime if it is not already sup-
ported by the host interpreter.

In this chapter we use two polyfill packages, core-js [102] and
mdn-polyfills [64], to test our approach. These libraries contain poly-
fill implementations of standard library methods added in the ES6 stan-
dard. core-js is the de-facto standard for polyfills with 78,000,000
monthly downloads. mdn-polyfills is less highly depended on, with
72,000 monthly downloads on NPM, the largest JavaScript package repos-
itory.

5.2.2 Architecture

We generate new test cases by dynamic symbolic execution of polyfills.
Analysis of these polyfills will generate inputs that explore the intricacies
of built-in specifications, but we do not have a ground-truth for the correct
behavior of a test case. To solve this problem we use a suite of interpreters
and have them vote on the correct answer. This acts an oracle to identify
when an implementation is incorrect, and only requires manual interven-
tion when two or more implementations diverge.

We split our implementation into two components, the test case gener-
ator, and the test case executor. The test case generator uses ExpoSE to
generate new test cases. The test case executor executes a test suite ex-
tracted from the symbolic executions and checks that each of our selected
interpreters is implemented correctly.

5.2.3 Test Case Generation

We generate new test cases by symbolically executing polyfills using Ex-
poSE. Figure 5.1 provides an overview of the architecture. We begin by
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Figure 5.1: Test Case Generator Overview.

supplying the test apparatus with a target built-in and the number of ar-
guments the method expects. The apparatus then constructs a series of
symbolic inputs to use as arguments. ExpoSE then analyzes the generated
test harness and begins to output a series of test cases. We also execute
each new test case in Node.js to remove spurious outputs triggered by er-
rors inside ExpoSE. We forward the result of the concrete and symbolic
executions to the path verifier, a tool that double-checks that the concrete
and the symbolic result are identical. If they are not, then the test case is
discarded. Otherwise, we add the test case to the generated test case suite,
and the symbolic path condition is used to generate new test cases. We use
an object-aware type encoding when finding alternate test cases to explore
more of our target polyfills (Section 5.3).

Modifications to ExpoSE In addition to adding support for symbolic ob-
jects (Section 5.3.2), we made additions to ExpoSE so that it can treat type-
coercions we observed in existing polyfills. In JavaScript, numeric values
may be either integers or floating point values and there is no idiomatic
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way to ensure that a value is an integer. If a developer wants to force a
number to be an integer they often use a bitwise operation to force the
coercion, since bitwise logic truncates operands to integers. To illustrate
this, the targetLength = targetLength >> 0 ensures that the length is an
integer with a bitshift by 0. ExpoSE did not accurately model bitwise oper-
ations and other esoteric behaviours of the type system, but these are used
often in built-in implementations, so we modified the engine to support
them.

5.2.4 Test Case Executor

The second component in our design is the test case executor. Our au-
tomatically generated test cases do not have a predetermined expected
result because the result found during symbolic execution may be from a
flawed implementation. Instead of using predetermined test case results,
we use a consensus-based approach to detect incorrect implementations,
illustrated in Figure 5.2. We execute each test case in several different in-
terpreters. Each interpreter has a different interface so we generate a com-
patible test through a test translator that takes a test input and returns
a program compatible with a specific engine. For polyfills, we inject the
target method into a Node.js instance, replacing any existing implementa-
tion. We then execute each of these programs and collect the output.

Once the test case has been executed by each implementation, we pass
the results to a voting mechanism. The voting mechanism looks for im-
plementations where behaviour diverges from the others. If the outcome
of a built-in call diverges either in exception type or result then we say
that the interpreters disagree and raise an error. Specifically, we say that
an implementation disagrees if either of the following two conditions are
violated:

1. If a test case throws an exception and others do not, or the exception
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type differs from other implementations.

2. If a test case has output different from the others.

Through this mechanism we can compare the behaviour of methods as
long as they do not return functions, since there is no standard way of com-
paring function implementation details in JavaScript. We do not compare
the exact text of exceptions because it is not specified by the ECMAScript
specification. If a single implementation disagrees then it is marked as in-
correct. When multiple implementations disagree, we cannot make any
conclusion about correct behavior and mark the test case for manual re-
view.

5.3 Representing Symbolic Data Structures in

JavaScript

To allow automated generation of structued test inputs for built-in meth-
ods, we require a method for maintaining symbolic objects and arrays. We
developed new encodings for untyped symbolic objects, i.e., symbolic ob-
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jects with no pre-specified property names or types (Section 5.3.2), arrays
of mixed types (Section 5.3.3), and for homogeneously typed arrays (Sec-
tion 5.3.4).

5.3.1 Motivation

Support for symbolic objects is key to the exploration of built-ins because
it allows thorough exploration of object and array centric built-ins. More
subtly, support allows the DSE engine to consider esoteric type-checking
in built-in methods. The specification includes precise but unintuitive
rules on how input values are to be interpreted and when type contract
violations should raise an error. To highlight how an object encoding can
improve coverage of these edge cases, we now consider Array.prototype
.find.

Usually, this method is given an array as its base argument and a pred-
icate. The array is then searched, left to right, until a value satisfying the
predicate is found. If no values satisfy the predicate then undefined is
returned. For example, [11,23,20].find((x)=> x % 2 == 0) would yield
20, the first even number in the array. If we look at the method specifi-
cation, we see that there is a quirk to this method contract. The method
accepts any object which looks like an array (i.e., any object with a length
property). Because of this Array.prototype.find.call({0: 11, 1: 23,

2: 20, length: 3}, (x)=> x % 2 == 0) behaves equivalently to the pre-
vious example, but Array.prototype.find.call({0: 11, 1: 23, 2: 20},

(x)=> x % 2 == 0) will yield undefined, since the object does not specify
a length.

One further quirk is the coercion of length to an integer. The speci-
fication does not reject non-integer length properties, leading to a coer-
cion that resolves Array.prototype.find.call({0: 20, length: true},

(x)=> x % 2 == 0) to 20, but Array.prototype.find.call({0: 20, length
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: false}, (x)=> x % 2 == 0) to undefined, as true is coerced to 1.

In mdn-polyfills these checks are implemented by var o = Object

(this), which ensures the value is either an array or an object, followed
by var len = o.length >>> 0, which selects the length of the object and
ensures it is an integer using type coercion [92]. In this case, if the length
property is not an integer then it is first coerced to a number and subse-
quently truncated to an integer. Through our encoding of objects, we can
synthesize useful test cases for such behavior.

5.3.2 Symbolic Objects

Representing JavaScript objects in DSE engines is challenging due to the
dynamic type system. Existing SMT solvers do not support a “theory of
objects.” Recreating a dynamic datatype in SMT and implementing the re-
quired reasoning would complicate solver-side logic and effectively move
much language-specific reasoning into the SMT solver, which is designed
to be language-agnostic. So instead we opt to translate the reasoning about
symbolic objects into a form that can be represented as an SMT problem
over primitive types. We develop an intermediate encoder that outputs
typed SMT problems directly in the DSE engine. The intermediate encoder
does not require solver extensions, instead simulating symbolic objects by
following every object operation along a program trace and exploring fea-
sible alternatives.

We model symbolic objects by tracking property lookups and up-
dates on objects. For this, we rewrite all property lookups to use the
common interface getProperty(object, propertyName), and all
property updates to use the common interface setProperty(object,
propertyName, value). We supply getProperty with object, the
object operated on, and propertyName, a string indicating which prop-
erty is being accessed. setProperty is additionally supplied with

138



5.3 Representing Symbolic Data Structures in JavaScript

objA
objA.r = 'hello'

return 'hello'

r: 'hello'

P2: X = 'z'

objA
objA.z

return Z

r: 'hello'

z: Z

objA
y: Y; objA.r = y

return Y

r: Y

z: Z

x: X; objA[x] = 5

return 5

objA

r: 5

z: Z

objA

r: Y

z: 5

P1: X = 'r'

Figure 5.3: Illustration of symbolic object modeling.

value, which is the new value for the given property. With this instru-
mentation, we can keep track of all object operations during execution,
updating the symbolic state when appropriate. We instrument arrays sim-
ilarly, with getProperty and setProperty interfaces for all property
lookups. They differ in the typing of property names, where they also ac-
cept integer values, since arrays can contain integer and string property
names.

The root of our encoding is the creation of new symbolic values for prop-
erties we have not seen before while returning the value stored in a state
for properties that we have previously set. Our encoding for objects is il-
lustrated in Figure 5.3. Here we see how a symbolic object behaves under
various typical operations.

The first step in Figure 5.3 shows how symbolic objects support fully
concrete operations. Here, we record the concrete value supplied to be re-
turned on subsequent lookups. When we perform a lookup for a property
that we have not encountered before, we introduce a new symbolic value
to the program and set it to the appropriate property. The created sym-
bol does not have a fixed type, and instead uses existing support in the
DSE engine to explore the program as if it were any of the supported sym-
bolic types. In the case of ExpoSE, the DSE engine we use in this chapter,
the symbolic types supported are undefined, null, boolean, number, string
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and through our encoding also objects and arrays. The second operation
illustrates this process on objA in Figure 5.3, where the new symbol Z is
introduced and assigned to the property z.

Next, we want to set a property with a concrete property name but a
symbolic value. As with a fully concrete set property, we record the sup-
plied property value to the object state; here, it makes no difference if the
supplied properties are concrete or symbolic.

The last matter that we address in this example is how we approach
setting and getting of properties with symbolic property names. Here,
we attempt to create new test cases for each of the previously recorded
properties of an object - even if they are subsequently deleted. The final
operation illustrates this in the figure, where we write a concrete value
with a symbolic property name, leading to two new paths. One where the
property r is replaced with 5, and another where the property z is replaced
with 5. This final step causes under-approximation in our encoding: We
do not enumerate on properties that we have not seen previously. We
could, in principle, support this through the enumeration of all possible
property names, but this would lead to an infeasible number of paths to
explore.

To implement our encoding we instrument the getProperty and
setProperty operations executed by a program with our object encoder,
detailed in Algorithm 6 and Algorithm 7. We send any portions of the
program trace involving symbolic objects to these intermediate encoders.
The distinction between known and unknown properties is core to our
symbolic object encoding, with the symbolic object keeping track of any
properties that it has encountered before. Each symbolic object is created
with an initial map of known properties. A setProperty operation with
a concrete property name marks that property as known, and it will then
on return the supplied value to preserve JavaScript semantics. The com-
plementary getProperty operation on a fixed property has normal behav-

140



5.3 Representing Symbolic Data Structures in JavaScript

Algorithm 6: Symbolic object encoder – getProperty(base, prop-
erty).

1 if property is symbolic then
2 for knownProp in base do

// Attempt to generate a test case for each
known property

3 if Concrete(property) = knownProp then
4 PC← PC∧ property = knownProp;
5 else
6 PC← PC∧ property 6= knownProp;
7 return base[property];
8 else
9 if property not in base then

10 base[property] =fresh symbol;
11 return base[property];

ior, returning the (potentially symbolic) known value from the object. So
far, this encoding is straightforward and preserves standard semantics,
returning known property values for an object. However, in order to ex-
plore the program symbolically, we need a special approach to treating
unknown field lookups. Whenever a program performs a getProperty on
an unknown field we return a new, untyped, symbolic variable rather than
undefined (the standard behavior). The specified property of the symbolic
object is then marked as known and fixed to this new symbolic value.
When a test case terminates, new tests will be created to explore the pro-
gram for each supported symbolic type.

There are a number of advanced features which can change the
behavior of getProperty and setProperty operations, such as
defineProperty, which can trigger the execution of a function instead
of map lookup. Methods can also be used to change the enumerability
of properties within an object. We concertize the symbolic objects when
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Algorithm 7: Symbolic object encoder – setProperty(base, property,
value).

1 if property is symbolic then
2 for knownProp in base do

// Attempt to generate a test case for each
known property

3 if Concrete(property) = knownProp then
4 PC← PC∧ property = knownProp;
5 else
6 PC← PC∧ property 6= knownProp;
7 return base[property] = value;
8 else

// Record the new value for property
9 return base[property] = value;

handling these cases, and so our encoding is under-approximate when
modeling these behaviors.

5.3.3 Mixed Type Arrays

We have described an approach to model objects, which are in essence
maps between string property names and values of any type. We now
show the same approach can be applied to arrays as well. Conceptu-
ally, arrays are very similar to objects, mapping integer or string property
names to values. The most significant differences between arrays and ob-
jects are the custom behaviors of the length property, enumeration, and
accompanying methods (e.g., push and pop). In JavaScript, it is valid to
also write to non-integer properties to arrays, with the array acting as a
object in these cases. For example, let arr = [1,2,3]; arr[’dst’] = ’/

home’; would yield [0: 1, 1: 2, 2: 3, length: 3, dst: ’home’].

We intercept reads and writes to array length, which is a reserved prop-
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Figure 5.4: Illustration of symbolic array modeling

erty name in arrays. The array length property will always be one higher
than the largest element index in the array. This point is important be-
cause arrays do not need to be contiguous (i.e., there may be gaps be-
tween two indices). This design choice has an impact on enumeration,
where looping on the array length will include all indices 0 <= index <

arrayLength, but using the of or in operators will only include those
which have been set, since these operators will only include properties
which are marked as enumerable. For example, examine the following
program:
1 let arr = []

2 arr[0] = 1;

3 arr[4] = 2;

Here, the interpreter will yield the array [0: 1, 4: 2, length: 5]. If we
enumerate using the of or in operators we would see 1 and 2 enumerated
upon, however if we enumerate and print all properties through the array
length then we would see 1, undefined, undefined, 2 printed.
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When a program writes to the array length property, the array will be
truncated or expanded to the new length. If the value is less than the
current array length, any values in the indices newLength <= index <

oldLength will be deleted from the array. If the value is greater than
the current array length, then the array will be extended with undefined
values. To illustrate this, see the following program:
1 let x1 = [1,2,3]

2 let x2 = [1,2,3]

3 x1.length = 100;

4 x2.length = 0;

In this example the variable x1 would have a length of 100 with all values
after 3 being undefined, while x2 will be empty.

We illustrate these changes in behavior through Figure 5.4. To ensure
we accurately model array length, we create a separate symbolic integer to
represent it. This value is initially unbounded and has constraints applied
as the program executes. As we fetch property 5, we explore two paths,
one where the existing length property is large enough to accommodate
the new value and one where it is not. In the case where it is not the value
of the property will be undefined, and in the other case it will return a
new symbol using the same approach as our symbolic objects. The second
step illustrates what happens when an array lookup occurs on an array
that is longer than our property index. Here, a second path is infeasible
because the array length cannot be less than six. Direct writes to an array
fix the symbolic length; writing a length of zero to the array truncates
it, removing all properties. Subsequent property lookups will all return
undefined. A write of length 100 expands the array to a fixed length but
does not fix any properties. Here, a property lookup creates a fresh symbol
because the previous one was erased. The new symbol is given a unique
name in the path condition, and can interact with the symbol that used to
occupy this property.
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5.3.4 Optimized Support for Homogeneous Typed Arrays

The final component of our encoding is a direct translation to SMT for
homogeneously typed arrays. This encoding enables symbolic property
names in homogeneously typed arrays. As motivated previously, directly
encoding JavaScript arrays in SMT is too expensive for DSE, since we
would need to encode potentially recursive values in SMT. Our generic
array and object encoding overcome this by on-demand symbol genera-
tion, but this strategy cannot reason about property indices symbolically.
For example, in the following program, we will not exercise the error:
1 let i = I with initial value 0;

2 let arr = A with initial value [];

3 if (arr[0] == 5 && arr[i] != 5) {

4 throw ’Error’;

5 }

In this program, we do not exercise the error because we concretize sym-
bolic property names. Thus, arr[i] will resolve to arr[0], leading to an
infeasible constraint of arr[0] = 5 ∧ arr[0] 6= 5, and will not consider any
paths where i is not 0 due to concretization. If we set i to 1, then this er-
ror would be found. We provide an encoding for homogeneously typed
arrays directly in SMT to explore portions of a program where property
name concretization is limiting analysis. Since the encoding is directly in
SMT, we no longer need to concretize property names, allowing us to rea-
son about property names symbolically.

Our encoding uses existing SMT solver support to represent arrays.
A typed array has two symbolic components, the array data and array
length. The array base is a symbolic mapping of integer property names to
symbolic values of the array’s type. The symbolic length property is used
to represent the current constraints on array length, which is necessary to
test out-of-bounds array element access. A symbolic getProperty can
explore two paths, one where the array is shorter than the index resulting
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Algorithm 8: Homogeneous Array – getProperty(base, index).

1 if 0 ≤ index < base.length then
2 PC← PC∧ 0 ≤ index < base.length;
3 return select(base, index);
4 else
5 PC← PC∧ (index < 0∨ index > base.length);
6 return undefined;

Algorithm 9: Homogeneous Array – setProperty(base, index,
value).

1 if index > 0 then
2 base.length = index+ 1 if index ≥ base.length otherwise

base.length;
3 base = store(base, index, value);
4 return value

in undefined, the second where the array includes the index, resulting in
a value of the array type. setProperty operations update the symbolic
length to accommodate the new value and then inserts it into the base.
This is illustrated in Algorithm 8 and Algorithm 9. In these algorithms,
the methods select and store map directly to SMT. We downgrade
when a setProperty is given a value that is not the array base type.

The process for downgrading a homogeneously typed array to a mixed-
type array is detailed in Algorithm 10. Array downgrading converts a
homogeneously typed array into a generic array to allow mixed types. We
do this by using the concrete array length to derive the initial mapping for
the mixed-type array. We copy the homogeneously typed array’s length
into the new array so that we respect existing length constraints.
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Algorithm 10: Homogeneous Array – downgrade(array)

1 knownValues = [];
2 for i in Concrete(base.length) do
3 knownValues[i] = select(base, i);
4 return GenericArray(knownValues, base.length)

5.4 Evaluation

We now set out to show the effectiveness of our approach on a subset of
JavaScript built-in functions introduced with the ES6 specification. Here,
we set out to answer the following research questions:

RQ1: Can a standard DSE engine be modified to usefully analyze
standard library method implementations?

RQ2: Can our approach find any bugs in built-in methods?

RQ3: Does the addition of our test cases improve coverage of
Test262?

We answer these research questions through three experiments on se-
lected functions introduced with the ES6 specification. In the first exper-
iment we evaluate the effectiveness of our conformance test case gener-
ation strategy using two polyfill packages. Here, we show that ExpoSE
achieves high coverage of many method implementations. For our second
experiment we use our generated conformance test suite and voting mech-
anism to search for errors in existing implementations of the ES6 standard,
finding 17 bugs in a widely depended on built-in implementation. Fi-
nally, we evaluate the coverage of our test suite against Test262 under the
quickjs interpreter. In this study we see that, while Test262 generally cov-
ers more branches of tested methods overall, our test cases explore parts
of the built-in implementations which are not covered by Test262.
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5.4.1 Test Case Generation

In our first experiment we answer RQ1 through an evaluation on two pop-
ular ES6 built-in method implementations found on NPM. We extracted
our surrogate implementations from core-js and mdn-polyfills

packages. Overall, we collected 96,470 new unique test cases. We show
that we achieve high coverage of the built-in implementations during
symbolic execution, suggesting that a large portion of the implementation
is covered.

Methodology

Our test harness loads the portions of the library we wish to test and se-
lects a target method. The method is then executed with symbolic argu-
ments for both the this argument and each of the method arguments.
We analyze this harness with ExpoSE. Each method is tested in isolation,
through a single analysis using ExpoSE with a timeout of one hour on a 64
core machine. After analysis, the generated test cases are combined and
duplicates are removed.

Results

We generated 129,960 new test cases overall, which was reduced to 96,470
after removal of duplicate tests. Table 5.1 presents the results of our evalu-
ation, providing coverage information from the analysis of the corejs and
mdn-polyfills variant if the method was supported by that library.
Overall, we found that our prototype is more capable of generating test
cases for string methods than array methods. These results are inline with
our expectations, as the string support in ExpoSE is mature. Further im-
provements in ExpoSE modeling and SMT solvers could improve this sup-
port even further. In particular, our encoding currently does not include
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Function Test Cases Coverage
corejs mdn-polyfills

Array.from 13122 90% 84%
Array.of 162 84% 82%
Array.fill 2645 89% 85%
Array.filter 81 88% N/A
Array.findIndex 162 72% 51%
Array.forEach 81 78% N/A
Array.reduce 729 76% N/A
Array.some 162 84% 35%
String.endsWith 64179 86% 82%
String.includes 15957 93% 91%
String.padStart 13220 94% 94%
String.padEnd 13220 94% 94%
String.repeat 2066 96% 83%
String.startsWith 4215 91% 88%
String.trim 2025 95% 83%

Table 5.1: Automatically generated test cases by built-in method.

symbolic models for array methods other than push, pop, includes,
indexOf, which may lower overall performance.

5.4.2 Executing Our Test Cases

We have now generated a suite of test cases for our selected methods and
are ready to test built-ins. In this section we set out to answer RQ2 by ex-
ecuting our tests on five JavaScript built-in implementations. We execute
each of our generated test cases on three interpreters and two polyfill im-
plementations. To analyze the output of these test cases, we construct the
voting mechanism outlined in Section 5.2.4 from our selected interpreters.
Each test case is executed once per interpreter, and after they finish they
vote on the correct output. We found 17 unique bugs in mdn-polyfills,
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Implementation Unique Exceptions Test Case Failure Bugs

mdn-polyfills [64] 34 200 17
corejs [102] 63 125 0
spidermonkey [89] 72 66 0
Node.js [32] 56 122 0
quickjs [13] 24 141 0

Table 5.2: Test case summaries for 5 built-in implementations.

showing that our approach is effective in generating useful test cases for
conformance testing. We did not find bugs in any other implementations
but this was expected as the methods tested are from a mature standard.
We found zero cases which required manual intervention during voting.

Methodology

We selected quickjs, spidermonkey (through the standalone interpreter),
Node.js, corejs and mdn-polyfills for testing. We tested each of the
test-cases identified in Section 5.4.1. We executed each test case once with
each competing implementation and stored the output. Next, we exam-
ined the result of each test case for divergence between the tested imple-
mentations. If there is any divergence then we used the outlined voting
mechanism to resolve the failing case. Test cases were each executed with
a maximum time of 10 minutes on each interpreter, though no test cases
hit this boundary. Tests which crashed or exceeded the timeout are termi-
nated with a failure.

Results

Table 5.2 presents a summary of test case executions for the 5 built-in im-
plementations. Unique Exceptions gives the number of unique excep-
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tions identified across the executions of all test cases (i.e, where an excep-
tion text has not been seen before after test specific details are removed).
Test Case Failure details the total number of test cases where the in-
terpreter failed to give a result due to crash or timeout. The final column,
Bugs gives the number of bugs found in each implementation.

Our test case executor found 17 bugs automatically, all within the im-
plementation mdn-polyfills. These bugs were confirmed with manual
analysis. For example, in one test case we observed that String.prototype
.includes.apply([0,0], [[]]) should yield true, but in mdn-polyfills the
built-in returns false. We found this divergence occurs because the im-
plementation does not coerce the [0, 0] to a string. The identified bugs
show that a consensus based test executor can be used to verify the cor-
rect behavior of built-in JavaScript methods. Manual analysis found that
the bugs identified were all triggered by unconsidered type coercions in
string and array methods. In some cases, this led to the method produc-
ing output when it should have thrown an error. In others, the method
produced an incorrect output, such as Array.includes, which would re-
turn true when it should have returned false on some inputs.

In addition to finding some bugs, we exercised many unique exceptions
in interpreters. The high number of unique exceptions suggests that our
test suite is exploring many interesting corner cases of implementation.
Interestingly, we do not see the same number of unique exceptions across
interpreters. We found that some implementations have much more ver-
bose error messages for built-ins than others. While the exception mes-
sages are not standardized, and so this is not an implementation error, the
lack of verbosity could make errors harder to debug.

We experienced some test case failure for each of the implementations
tested. We observed zero cases of failure due to test timeouts or inter-
preter error; instead, all observed failures were due to interpreter memory
limits. Most of these errors occur in String.repeat, where many of the
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test inputs are large values which hit interpreter memory limits. We ex-
amined our surrogates to understand why the DSE engine is generating
such extreme cases. We find that in one of our surrogate implementations
there is an upper limit on string size through a boundary condition if

(str.length * count >= 1 << 28). The condition drives ExpoSE to gen-
erate a series of test cases supplying large arrays or strings as input. The
specification does not specify interpreter memory limits, so the different
number of failing cases is not an error. In particular, we observed that spi-
dermonkey avoids test case failure in these cases by having stricter limits
on bounds for repeat. As an example, at the time of writing, Node.js will
execute ’h’.repeat(1 << 28) but spidermonkey will not. In the specifi-
cation, ECMAScript does not add any constraints to the range of strings,
so long as they are positive integers. In practice, the reason we see these
memory errors in quickjs and Node, but not spidermonkey, is because
string boundaries are explicit in spidermonkey method implementations.
So these errors manifest as exceptions without crashing the interpreter.

Our study has shown that we can detect faults in a real built-in imple-
mentation with 35,000 weekly downloads at time of writing. The abil-
ity to detect real bugs using our approach shows that a consensus based
approach for test case evaluation can be effective. In addition, our ap-
proach generated a large number of unique exceptions in the tested cases
and covered an obscure difference in string length constraints between
interpreters, demonstrating that our test cases explore interesting paths
through the implementations.

5.4.3 Test Suite Coverage

To ensure that our new approach generates novel test cases, we now com-
pare the branch coverage of the new test cases to Test262. We show that
the addition of our test cases leads to an increases in overall branch cov-
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erage in quickjs, demonstrating that our approach is generating novel test
cases.

To test our approach we built a version of the quickjs interpreter with
support for gcov so we could collect internal code coverage metrics.
quickjs is a complete ES6 implementation of JavaScript [13]. We selected
this interpreter because it executes the code in a purely interpreted man-
ner, without JIT or other runtime optimization, and it has built-ins imple-
mented directly in its source code. This is important as many prominent
engines, including Node.js [32] and spidermonkey [89], do not implement
language built-ins directly in source code. Instead, these engines imple-
ment a small subset of JavaScript in their native language and then im-
plement the remaining built-ins in JavaScript. Implementing built-ins in
JavaScript allows these engines to take advantage of JIT optimizations and
reduce engine development time, but, this makes it challenging to collect
coverage metrics as built-in functions do not have a clear instrumentation
point.

In our study, we found that our automatically generated conformance
test suite improves branch coverage by up to 15%. We see coverage im-
provements in almost every tested function, demonstrating that the ap-
proach is versatile. Our results show that we can use automatically gener-
ated test cases to supplement the Test262 suite to provide greater over-all
coverage of JavaScript interpreters.

Methodology

We modified the quickjs build process to include support for branch cov-
erage output via gcov, a tool which collects coverage information through
compile time instrumentation. For each built-in method, we then exe-
cuted all of our generated test cases and the relevant portion of the Test262
suite. Once each had finished, we extracted the covered branches, using a
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manual analysis to identify the appropriate function names in the quickjs
source code.

When evaluating the coverage of a function within a program, we
present both shallow and deep metrics for combined coverage increases,
and follow calls to a depth of 3 when presenting absolute branch coverage.
If we only present shallow coverage metrics (i.e., we do not follow func-
tion calls), then we may under-represent coverage improvements as logic
for built-ins is often spread across many methods. Conversely, including
all reachable functions may make our results less insightful by including
large amounts of indirectly related code, such as utility methods, which
may also be called by other methods during execution. By presenting our
combined coverage improvements at different call depths, the reader can
see how branch coverage changes as we follow an implementation deeper
into the methods it calls.

In our coverage metrics we only include methods defined in the core
quickjs implementation and do not include library calls.

Results

Table 5.3 details total number of branches, branches covered by our sys-
tematically generated conformance tests (ExpoSE), and branches covered
by Test262. We selected a call depth of 3 as following calls further in-
cluded many utility methods, making results less insightful. Here, tests
generated by our approach achieve reasonable branch coverage, but do
not exceed the coverage of Test262 which is already very high for every
method. When we combine the branches covered by automatically gener-
ated conformance tests and Test262 we see an overall coverage improve-
ment over Test262 for every tested function, demonstrating that generated
conformance tests are exploring new routes through the implementation.

Table 5.4 shows the results of our coverage study at various call
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depths. The function names in the table are the internal function names
in quickjs. quickjs sometimes implements optimized methods for typed
arrays, which is why there may be two methods for the same feature. We
see branch coverage improvements in many of the methods we test, in
some cases seeing a 15% improvement overall. Our results demonstrate
that our automatically generated test cases do explore further into built-
in method behavior than Test262 answering RQ3. In most functions, we
see notable coverage increases, even at a call depth of 0 (i.e., not including
the coverage impact of any called methods). These results highlight that
our approach is exploring untraveled paths through built-in function im-
plementations login, and not just expanding coverage in utility methods.
The coverage increases at low call depths show that built-in specific edge
cases are being exercised, as these expressed near the surface of the call-
tree. A full set of results including absolute branch numbers is available
publicly online 1

Our study of interpreter coverage between automatically generated
conformance tests and Test262 shows that supplementing Test262 with au-
tomatically generated test cases will improve the test suite. We found that
our approach would improve branch coverage of the test suite by up to
15% in a complete ES6 JavaScript engine. These improvements demon-
strate that our method can improve conformance testing for JavaScript
interpreters using only automatically generated test cases. Such coverage
improvements in the testing suite raise the likelihood that implementation
errors will be detected before they cause problems in the wild.

1https://anonymous.4open.science/r/fef322ae-fbad-4037-9b1a-c535ffacb8be/
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typed_array_from
897

572
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696
78%

829
92%

array_of
875

509
58%

640
73%
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86%

typed_array_of
512

285
56%

405
79%

457
89%

array_fill
740

436
59%

586
79%

663
90%

typed_array_fill
222

165
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180
81%

206
93%

array_every
953

564
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92%

array_find
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294
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array_includes
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667
91%

string_includes
220

148
67%

183
83%

194
88%

string_pad
139

85
61%

112
81%
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string_trim
54

34
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string_repeat
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Function +Branches% (Depth)
0 3 5

array_from +4.76% +14.42% +14.68%
typed_array_from +6.14% +14.82% +13.48%
array_of +0% +13.03% +12.83%
typed_array_of +41.67% +10.16% +14.19%
array_fill +0% +10.41% +10.57%
typed_array_fill +8.33% +11.70% +14.97%
array_every +8.33% +13.12% +12.64%
array_find +8.51% +9.3% +11.41%
typed_array_find +11.43% +13.52% +15.32%
array_reduce +3.13% +11.4% +12.36%
array_includes +1.67% +10.63% +11.76%
string_includes +0% +5% +9.69%
string_pad +0% +6.47% +10.68%
string_trim +0% +1.85% +8.37%
string_repeat +0% +2.88% +10.52%

Table 5.4: Coverage improvements of automatically generated tests at var-
ious call depths by built-in method implementation.

5.5 Related Work

Dhok, Ramanathan, and Sinha [36] develop extensions to Jalangi [115]
which reduce the frequency of redundant test cases when exploring
JavaScript programs with unfixed types. Here, the authors use a type
aware encoding strategy to reduce the frequency of redundant test cases
by collecting type expectations during test case execution. This encoding
strategy can be combined with our encoding scheme to improve the per-
formance of symbolic execution further. In particular, this would allow
for better automated selection of our typed array support, where we can
know that an array will not be subsequently downgraded.
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Mayhem [24] is a dynamic symbolic execution engine for compiled pro-
grams that represents a 32-bit address space symbolically to model pro-
gram memory. In this work a symbolic memory model improved the ef-
fectiveness of DSE by 40%, showing that supporting symbolic memory is
crucial. To make their solution feasible, they limit the symbolic represen-
tation to reads and do not consider writes symbolically. EXE [22] supports
a single-object model, where pointers are concretized and only a single ad-
dress is considered. The approaches are similar to our own when treating
symbolic field names, where ExpoSE concretizes the field name to avoid
exploring an unbounded number of inputs.

S2E [30] models system memory symbolically in a symbolic ma-
chine emulation, achieved through instrumentation of memory reads and
writes. Modeling memory interactions in low level applications is very
different from JavaScript, since memory is fixed type and the DSE engine
does not need specific encodings for language structures.

The DSE engine KLEE [21] supports multiple memory models, includ-
ing a forking approach where one path is created to explore each symbolic
memory region, and a flat approach which reasons about memory as a sin-
gle continuous block. Recent approaches split memory regions into seg-
ments to allow more efficient analysis [66]. These approaches are highly
tailored to reasoning about systems memory with C style pointers and are
not directly applicable to JavaScript object modelling.

There has been work to enable automated testing for Java [56, 106, 9].
Symbolic encodings for Java classes are insufficient for JavaScript as they
rely upon a known structures and typing [68, 132, 135]. Our approach is
similar to previous symbolic representations of maps, but does not require
fixed type fields.

Kristensen and Møller [70] use TypeScript type specifications and feed-
back directed random fuzzing to identify mismatches between type spec-
ifications and observed behaviours. Through this approach the authors
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identify many inconsistencies, motivating the use of dynamic analysis for
specification testing.

Marinescu and Cadar [84] symbolically execute test suites to find bugs.
A symbolic execution runs on the existing harnesses used by a program
for unit testing, replacing concrete values with symbolic ones in order take
advantage of interesting test conditions. Unlike our approach, only sim-
ple error conditions are considered because the tool cannot deduce the
expected output after a charge in input.

Palikareva, Kuchta, and Cadar [98] use DSE to automatically discover
differences in behaviour between program versions. The authors test ver-
sions of the same software, while our approach tests differences between
many implementations of the same specification. As versions of the same
software are tested but program specifications are not static, it is difficult
to decide whether changes in behaviour between two versions are desired.
This differs from our approach, where the behaviour of compliant imple-
mentations is fixed and divergence is an error.

Bae, Park, and Ryu [11] use type expectations provided by analysis
tools to prioritise likely useful types when selecting new test cases. This
approach can be applied to our exploration strategy, but requires a pre-
analysis of the program and is unlikely to provide notable benefit when
dealing with complex objects and arrays, areas where JavaScript type anal-
ysis tools are unreliable.

Selakovic et al. [113] develop LambdaTester, a testing tool for
JavaScript methods which accept functions as inputs. This tool explores
these methods by inserting generated callbacks as function arguments
during dynamic testing. A similar extension to ExpoSE may improve the
performance of conformance test generation, since some standard library
methods are high-order, but the lambda generation approaches presented
in the paper would also require significantly more test cases, increasing
overall test case generation time.
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In this chapter, we use ExpoSE to develop a new web accelerator, Oblique,
which uses a symbolic offline analysis of a webpage to facilitate pre-
fetching of page dependencies, even if they have nondeterministic URLs.
Our new proxy, Oblique, uses dependencies computed by ExpoSE along-
side a lightweight solver and the concrete request headers to quickly de-
cide ahead of time what resources that need to be pre-fetched for a client.

Prior Appearances This work will appear in NSDI 2021. It is a joint work
with Ronny Ko and James Mickens at Havard University and Ravi Ne-
travali at UCLA. My primary contributions to this work are the extension
of ExpoSE to support symbolic execution of web applications, and devel-
oping the apparatus required to find dependencies.

6.1 Introduction

Speculative loading (SL) describes a system for web acceleration by trig-
gering to the browser to load a resource before it is needed (pre-fetching).
By sending webpages before they are requested, a speculative loading ap-
proach shifts the bottleneck to the device’s CPU, removing the impact of
network latency. Existing solutions include resource dependency resolu-
tion (RDR), which tasks resource discovery to a proxy with a high-speed
internet connection [90, 78, 91, 118, 133]. RDR proxies use an online ap-
proach to resource discovery; a browser instance which executes the web-
page inside the proxy. The proxy tracks network requests made by the
browser and begins transmitting these back to the client, even though
they have not yet been requested. A component in the client caches these
incoming dependencies until the browser requests them. Through this
scheme, all of a devices bandwidth is used, reducing overall page loading
time. Such proxies are expensive to run, since they require a full browser
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instance.
Other approaches, such as Vroom [107], perform offline analysis to spec-

ulatively load webpages. Here, a browser instance is used to identify de-
pendencies offline and cached so that they are available for pre-fetching
on the next request. But approaches like Vroom are not able to explore
JavaScript control-flow to find all dynamically driven dependencies. Nor
are they able to pre-fetch non-deterministic URLs, leading to missed op-
portunities for pre-fetching and increase page-load times. The lack of non-
deterministic URL support in prior work can also increase the number of
incorrectly pre-fetched URLs, which consume network resources.

Existing speculative loading approaches pre-fetch based on observed
network requests during dynamic analysis, or static analysis of the web-
page source code. These analyses miss dependencies since they are un-
able to explore network requests driven by JavaScript. To improve this
we use ExpoSE to explore the JavaScript on a webpage. We explore all
control flows necessary for pre-fetching by replacing JavaScript values de-
pendent on request headers with symbols. Since ExpoSE already builds
a symbolic path condition, we can use it as the trigger condition for a de-
pendency. The work has one notable advantage over previous work; it can
support non-deterministic dependency URLs. For example, our approach
can prefetch the URL loaded by the following JavaScript: load(window.

userAgent + ’hello.js’). The support for non-deterministic URLs makes
the dependencies detected by DSE more reliable than other SL approaches,
reducing the number of incorrectly pre-fetched pages in non-deterministic
dependencies. Additionally, only one analysis is necessary to pre-fetch for
all variations of request headers.

In this chapter we introduce Oblique, a constraint-based SL proxy for
web acceleration (C5). First, we use ExpoSE to execute web pages sym-
bolically, with the request headers made symbolic, and all other inputs
to the webpage are fixed. We use the results of the analysis to build a
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constraint-based resource dependency table. When a browser requests a
webpage the request headers and page dependency table can be used to
decide which resources will be requested. In this chapter we present the
following contributions:

• Oblique, our new web acceleration system.

• To enable symbolic execution of webpages we extend ExpoSE with
support for symbolic execution of webpages based on symbolic re-
quest headers.

6.2 Proxies and Speculative Loading

A web proxy is a program which makes HTTP requests on a clients be-
half. A proxy tool waits for HTTP requests to be sent by a client (usually,
a web browser), and then returns a response by itself requesting the orig-
inal target. The proxy has visibility on the request and any subsequent
response, enabling analysis and caching. Proxy tools have a variety of use
cases across the web, including load balancing, caching, and security.

Speculative loading approaches reduce page-load times by routing traf-
fic through proxies which can begin pushing the files a webpage is ex-
pected to load before the client browser has made the request. These
approaches reduce the network bottleneck in page load times. Specula-
tive loading can decide what resources will be fetched through online or
offline analysis. Resource dependency resolution is an online approach
which loads the webpage in a browser running on the proxy to pre-fetch
files [78, 90]. Vroom [107] is a hybrid approach which uses a cache of ex-
pected dependencies, but combines the result with statically identifiable
dependencies in pages as they pass through the proxy.

Resource dependency resolution is an established approach for reduc-
ing browser loading times. In these systems, a RDR proxy leverages its
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own internet connection to begin transmitting the dependencies of a web-
page before the client has requested them. Resources are pre-transmitted
by using a pool of real browser instances inside the proxy to directly load
the website and execute any JavaScript to find dependencies. The ap-
proach is expensive for the proxy provider, as typically browsers consume
large amounts of system resources when executing webpages. Proxies
usually serve many clients concurrently, so in high-load situations, this
extra overhead may end up slowing page-load times as the proxy strug-
gles to keep up. RDR proxies are vulnerable to denial-of-service attacks.
By requesting several instances of a page with bad JavaScript, such as an
infinite loop, a malicious user can consume all available resources on the
system.

Ruamviboonsuk et al. [107] use a hybrid offline and online analysis to
reduce the cost of speculative loading. Vroom uses online analysis to pre-
fetch all directly observed dependencies of a webpage using a lightweight
static analysis. It also performs an offline analysis using RDR to prefetch
dependencies that can not be identified statically, such as those driven by
JavaScript, or triggered by later dependencies. This approach is effective
in practice, reducing the cost of RDR by removing the need for a browser
instance per served client. The drawback is the lack of complete coverage
of the application; Vroom will work best if the client is using the same,
or suitably similar request headers, and will perform poorly when the
client is using a different browser to the offline analyser or headers are
specific to the client (e.g., the cookie flag). Vroom also cannot support
non-deterministic URLs, which can cause missed pre-fetches and lead to
incorrectly pre-fetched resources.
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6.3 Overview

Figure 6.1 describes the architecture of Oblique. Whenever a request is
processed, a dependency database will be used to check dependencies for
this page have been precomputed. If we do not have dependencies, then
we act like a normal proxy and do not pre-fetch. Once the same page
has been seen a sufficient number of times by several different users, Ex-
poSE is scheduled to perform a symbolic analysis of the page in the back-
ground. Once ExpoSE has analyzed the webpage discovered dependen-
cies are added to the dependency database with a time-to-live. While a
page is in the dependency database, requests for the website can be pre-
fetched. On request, a client’s request headers are supplied as arguments
for the dependency table trigger conditions which are then used to de-
cide what dependencies will be requested. Here, non-deterministic de-
pendency URLs are turned into concrete URLs by substituting in the re-
quest headers. Once the time-to-live expires, we remove the dependen-
cies; this step is necessary to mitigate the impact of webpages changing
after deployment. Note that, since pages are only cached after they have
been requested multiple times by different users, we avoid the problem of
ExpoSE symbolically executing many client-specific URLs.

6.4 Analysis of Client-Side JavaScript

We seek to analyze client-side JavaScript and identify resource dependen-
cies triggered by changes in request headers. We use ExpoSE to identify
these resources and the corresponding dependency trigger conditions. We
extend the ExpoSE analysis framework, adding support for web applica-
tions and resource dependency detection. To begin, we provide a descrip-
tion of our modifications to ExpoSE for web applications (Section 6.4.1).
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Figure 6.1: An overview of the approach architecture.

Next, we present a scheme to represent resource dependencies and the
corresponding trigger conditions (Section 6.4.2). Finally, we illustrate how
this approach works by example (Section 6.4.3).

6.4.1 Symbolic Execution of Web Applications

No publicly released DSE engines for JavaScript supported web applica-
tions. This led us to modify our JavaScript DSE framework to add sup-
port for symbolic execution in the browser. In order to add support for
web-based JavaScript to ExpoSE we implement a custom browser based
on Electron [40]. This browser has two responsibilities. First, it facilitates
the instrumentation of incoming JavaScript, rewriting it with the existing
instrumentation infrastructure. Second, it exposes the Z3 solver and na-
tive libraries to the instrumented JavaScript. This is required because web
browsers are sandboxed, and interaction with a native library is prohib-
ited. In order to detect resource dependencies we developed a novel test
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harness for web applications. This test harness automatically generates
test cases for alternate control flows through the program by replacing the
HTTP request headers with symbolic values. The custom browser layer
uses these symbols in the network requests it makes in order to avoid cases
where servers deploy different code based on request headers.

Figure 6.2 gives a high level overview of our revised architecture for Ex-
poSE. A set of request headers are sent to a test-case executor. The executor
propagates these request headers to a browser instance, which loads the
given webpage and instruments all source code. The instrumented pro-
gram is then executed by the browser’s interpreter. After the page finishes
loading, the program trace is then sent to the executor which symbolically
encodes the trace. Next, an SMT solver is used to generate alternate as-
signments for the request headers.

This approach allows us to instrument and trace executing JavaScript
inside the browser using the same symbolic interpreter that we use for
our Node.js analysis. The hosted browser uses its own interpreter to per-
form concrete execution, but defers symbolic execution to our existing
Executor. Through this architecture we can reuse the components of Ex-
poSE that make it practical, such as the distributed architecture, string and
regular expression models, and faithful handling of asynchronous events.

6.4.2 Detecting Resource Dependencies

In order for our proxy to function, the triggering condition and symbolic
URLs must be stored. We split our dependency detector into two com-
ponents, a static HTML analyzer, and dynamic dependency detector. The
purpose of the first component, the static resource dependency detector, is
to identify all resource dependencies which are not driven by JavaScript,
such as images embedded directly into the webpage source. In our frame-
work, we treat these as constant dependencies, assuming that a client will
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Figure 6.2: Our new ExpoSE architecture.
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always request them when loading a given page. The second component
uses ExpoSE to find the dynamically driven requests within a webpage.
Here, the trigger condition and resulting URLs can contain symbolic com-
ponents which depend on the real client’s request headers.

ExpoSE builds the path condition, a symbolic representation of the cur-
rent program trace, during execution. We use the path condition and re-
quest URL as our trigger conditions and symbolic URL. We configured
ExpoSE to log the path condition and resource URL upon resource load.
After all test cases have finished executing these outputs are collected and
a resource dependency table is developed. The server front end then uses
the stored path conditions as trigger conditions, substituting in a client’s
request headers to decide what resource dependencies will be requested
following an initial page load. We do this by substituting the symbols
for each request header value in the SMT path constraint with the real
clients request headers. If the SMT problem is satisfiable then the corre-
sponding URL is marked as dependency. URLs in the dependency table
may contain symbolic portions, such as ’http://example.com/?’ +

userAgent. These symbolic portions are made concrete during this step
using the request headers from the real HTTP request.

6.4.3 Example: Find Resource Dependencies with ExpoSE

To illustrate how DSE finds resource dependencies in a JavaScript pro-
gram we will now look at the following example.
1 navigator.userAgent = UA;

2 document.cookie = COOKIE;

3 if (/Chromium/.exec(navigator.userAgent)) {

4 loadScript("chrome.js");

5 }

6 if (/ads=on/.exec(document.cookie)) {

7 loadScript(navigator.userAgent + "ads.js");

8 }
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The program loads the chrome.js JavaScript program only if the word
Chromium appears in the user agent, and then loads userAgent +

ads.js if the string ads=on appears in the request cookies. To ana-
lyze the program we first set the userAgent and cookie to be symbolic,
given the symbolic names UA and COOKIE.

Test Case 1 We then begin our concolic execution with the seed test
case, inputs userAgent = "", and cookie = "". Executing line 1
we take the else condition, as /Chromium/.exec("") == null. This
adds the logical constraint UA 6∈ /Chromium/ to the path condition.
Next, on line 4, we also find that /ads/.exec("") == null and add
COOKIE 6∈ /ads = on/ to the path condition. With our first test execution
complete, we now turn to the SMT solver to find alternative test cases.
First, we query whetherUA ∈ /Chromium/ is feasible and from this gen-
erate the new the test case input userAgent = "Chromium", cookie

= "". Next, we query whether UA 6∈ /Chromium/ ∧ COOKIE ∈
/ads = on/ is feasible and generate the new input userAgent = "",

cookie="ads=on".

Test Case 2 Executing our second test, userAgent = "Chromium",

cookie = "". On line 1, we take the true branch of the if condition,
and load the script chrome.js. On line 4 we take the else condition,
since our cookie is empty. After execution terminates, we query whether
UA ∈ /Chromium/ ∧ COOKIE ∈ /ads = on/ is feasible, and generate
the new test case userAgent = "Chromium", cookie = "ads=on"

Test Case 3 After that we execute the test userAgent = "",

cookie="ads=on". Here, we take the else branch on line 1, and the true
branch on line 4. This causes us to load a script with the symbolic URL
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Table 6.1: A resource dependency table after symbolic execution.
Trigger Condition Symbolic URL
UA ∈ /Chromium/

∧COOKIE 6∈ /ads = on/
chrome.js

UA 6∈ /Chromium/

∧COOKIE ∈ /ads = on/
userAgent + ads.js

UA ∈ /Chromium/

∧COOKIE ∈ /ads = on/
chrome.js, userAgent + ads.js

userAgent + ads.js. Upon termination, the DSE engine decides that
there are no feasible alternate test cases for this path.

Test Case 4 We now execute our final test case, userAgent =

"Chromium", cookie = "ads=on", which was generated by test case
2. During execution of this test, we take the true branch on lines 1, and 4.
As such, the browser during this test loads both loads both chrome.js

and the symbolic URL userAgent + ads.js.

After Execution Our symbolic execution has now exhausted all test
cases, and so terminates. We now collect all of the loaded URLs across
paths and construct a dependency table for this website. We do this by
scanning the output for URL load messages and taking the symbolic path
condition (PC) at the point where URL was loaded to be the trigger condi-
tion. This leads to the resource dependencies in Table 6.1. Our proxy can
use this table to decide which JavaScript driven resource dependencies
will be requested for the given page.
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6.5 Proxy Implementation

6.5 Proxy Implementation

To test this scheme in practice we developed Oblique, a resource depen-
dency resolution proxy that can take a dependency table, developed by
ExpoSE, and use it to send webpage dependencies to a client before they
are requested. Oblique has two components, a local cache, and a SL proxy.

Oblique needs to be able to send dependencies to the client device and
hold onto them before they are requested. We achieve this by the use of
a local cache. The local cache is responsible for caching incoming files
until they are requested. Modern browsers have these caches built in, and
the HTTP/2 push standard allows for a web server to reuse an existing
connection to push expected dependencies to a browser cache [61]. In
other deployments, a custom proxy running on the local machine can be
used to facilitate pre-fetching and caching.

When the proxy receives a request, it examines the dependency table for
any resource dependencies for the given URL. Each resource dependency
stored comes with two elements, Trigger Condition and Symbolic

URL. The trigger condition is an SMT program which, if satisfiable, means
that the resource will be loaded. The Symbolic URL is an SMT expression
that can be resolved to the concrete URL. To resolve a resource depen-
dency, we use a custom solver capable of quickly solving SMT programs
with concrete inputs (i.e., we use the syntax of SMT solvers but expect only
concrete problems). We provide this solver with the concrete request head-
ers of the web request, making the Trigger Condition and Symbolic

URL wholly concrete problems, since every symbol now has a concrete
value. We first test if the Trigger Condition is satisfied. If it is, then
we say that the result of evaluating the Symbolic URL is a dependency
of the webpage. Any identified dependencies are then pushed to the client
cache.

As a webpage executes, network requests will trigger. Requests will first
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check the cache, to see if the request has been pre-fetched. If it has, then
the pre-fetched resource is selected and can be used immediately. If the
request is not pre-fetched, then a network request is made for the resource.

6.6 Example: Oblique in Action

We now illustrate this how Oblique works in action by executing it on the
JavaScript analyzed in our previous example (Section 6.4.3). We examine
Oblique when resolving a request to this website by a browser with the
user agent Chromium and the cookie value ads=on, which according to our
previous analysis has the dependencies chrome.js and userAgent + ads.

js. To begin the browser makes a request for index.html on the target web
server via the local cache:

Local Cache

Browser

index.html

Next, our local cache initiates a connection with Oblique and requests
the file index.html from the specified web server. We now need to decide
which resources to pre-fetch. Upon receiving this request our proxy checks
it’s database and finds the existing resource dependency conditions for the
website. The request user agent and cookie values are used to test whether
any of the resource dependency conditions are met, and in this case, we
identify that chrome.js and userAgent + ads.js will be requested later.
Since one of our symbols is non-deterministic, we now substitute in the
userAgent for that client, resulting in the URL Chromiumads.js. As such,
Oblique identifies chrome.js and Chromiumads.js as resource dependen-
cies.
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We have now found the two resource dependencies for this website and
concretized them, so Oblique begins the process of pre-fetching. Oblique
now requests index.html, chrome.js, and Chromiumads.js from the target
webserver and begins transmitting them both back to the clients cache,
even though the client has not yet requested chrome.js or Chromiumads.js.
Upon receipt, the local cache returns index.html but holds on to chrome.js

and Chromiumads.js:

Local Cache

Browser

Oblique

Web Server

index.html index.html

index.html, chrome.js,

Chromiumads.js

Once index.html is returned to the browser it is processed. As the
JavaScript on the webpage executes, the browser then requests chrome.

js and Chromiumads.js from the local cache. Since we pre-fetched this files
they are returned immediately:

Local Cache

Browser

Local Cache

Browser

chrome.js chrome.js Chromiumads.js Chromiumads.js

6.7 Evaluation

To evaluate Oblique and the web browsing component of ExpoSE, we
compare the effectiveness of our pre-fetching approach to Vroom and
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RDR, state of the art speculative loading approaches in offline and on-
line analysis. We selected 200 websites from the Majestic Million website
rankings so that we can compare the performance across an array of real-
world webpages and JavaScript [82]. For our evaluation, we pre-analyzed
the websites with ExpoSE and Vroom so that we can evaluate their per-
formance directly. We focused our analysis on evaluating the page load
performance of Oblique, as well as the effectiveness of ExpoSE in detect-
ing dynamic URLs across domains. In particular, we set out to answer the
following research questions:

(RQ1) What impact does a DSE driven speculative loading approach have
on page load times when compared to a standard browser and ex-
isting web acceleration schemes?

(RQ2) How successful is ExpoSE at identifying dynamic resource depen-
dencies?

6.7.1 Methodology

For all experiments throughout this section, we used Galaxy S10e (An-
droid 9), running Chromium 78 on Linux on Dex. We selected top 200
landing webpages in the Majestic Million whose average round trip time
(RTT) between our phone and the real web server is not greater than that
between our phone and our proxy in the cloud (47 ms). ExpoSE was exe-
cuted on each website for up to 30 minutes, with a maximum individual
test time of 10 minutes. We implemented evaluation scripts that measure
various performance metrics (the PLT, speed index, cached URL hit rates,
unused pre-fetched URLs) based on the Browsertime library. For the web
proxy, we used a Digital Ocean virtual machine with 8 virtual CPU cores,
16GB RAM, 640GB SSD, and 2GBits/sec network bandwidth. We imple-
mented the RDR proxy in C and used headless chromium. We imple-
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Figure 6.3: The page load times of our evaluated webpages when com-
pared to a standard browser.

mented the Vroom proxy based on the source code of nghttp2, myhtml,
and katana. For measuring each performance metric we tested the each
webpage 5 times and computed the average. For Oblique and Vroom, we
tested each webpage 1 hour after each of their dependency analysis.

6.7.2 Browser Performance

We evaluated the performance of Oblique by measuring the average page
load times of Oblique, Vroom, RDR, and a standard browser using the 200
websites selected from the Majestic Million list. We found that Oblique’s
average page load time (3.29s) was 31.9% faster than a vanilla browser
(4.34s). This speedup was 17.3% higher than RDR (3.79s) and 5.4% higher
than Vroom (3.43s). Overall Oblique improved page loading times by 1.1s
on average in our evaluation.
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Figure 6.4: The page load times of our evaluated webpages when com-
pared to a standard browser, Vroom, and RDR.

Figure 6.3 gives a cumulative distribution of time until page load for
our evaluated webpages comparing Oblique and the standard browser.
Oblique provides little advantage in pages which load quickly, indicating
these pages tend to load quickly due to a lack of dependencies. In pages
which take a long time to load, Oblique has the largest impact, shifting
the distribution of page-load times for latent pages toward the 4 second
mark, where the distribution is evenly spread between 4 to 8 seconds in
the vanilla browser.

Figure 6.4 presents a cumulative distribution of Oblique, a standard
browser, Vroom, and RDR. Oblique and Vroom both show more speedup
than RDR as the depth of dependencies in the program execution in-
creased because the offline analysis allows for these approaches to pre-
fetch URLs immediately, but RDR needs to execute the JavaScript first.

178



6.7 Evaluation

Oblique’s average loadtime was shorter than Vroom due to its higher hit
rate for pre-fetched resources, in particular for dynamic URLs that involve
non determinism.

On average, 2.06% of the URLs Oblique pre-cached went unused, and
2.24% went unused in Vroom. 22.8% of the URLs fetched by our RDR
proxy were never requested, a much higher proportion of URLs. Each
unused dependency consumes bandwidth, so maintaining a low number
of incorrectly fetched files is key to maintaining performance.

For Oblique and Vroom, we also measured the page load time at various
periods after the offline analysis of the website. After a 7 hour gap Oblique
and Vroom’s average page load time was 3.56s and 3.67s, respectively; 12
hours after analysis, their average was 3.58s and 3.88s. All of these were
still faster than the average page load time of RDR (3.98s) and a vanilla
browser (4.34s). Here, Oblique shows the smallest gap due to its support
for pre-fetching of non-deterministic URLs.

6.7.3 Performance of ExpoSE

We now evaluate the performance of ExpoSE at finding resource depen-
dencies. In our evaluation, the pre-fetched and missed dynamic depen-
dencies (JavaScript driven dependencies discovered by ExpoSE) of a web-
page were measured, so we know what proportion of page dependen-
cies driven by the JavaScript engine were pre-fetched. Since Oblique’s
pre-fetch behaviour for dynamic URLs is dependent on ExpoSE having
discovered the URL during symbolic execution we can directly use it to
compare the performance of ExpoSE. Overall, we pre-fetched an average
of 77.8% of the dynamically driven dependencies on a website. Figure 6.5
plots a cumulative distribution of dynamic URL hit rate across the web-
sites in our evaluation. Overall ExpoSE performs well, identifying 9.6%
more dynamic resources than Vroom, the other offline analysis in our eval-
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Figure 6.5: A cumulative distribution of Oblique, Vroom and RDR.
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Figure 6.6: The distribution of cache misses across websites in our evalua-
tion.
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uation. Here, the lack of a need for a concrete browser shows a distinct
advantage; The RDR implementation pre-fetched 15% less dynamic URLs
than Oblique, since the browser did not load and execute the JavaScript
fast enough to pre-fetch the resource for the client.

Digging further into the performance of dynamic URL component of
Oblique further we now present Figure 6.6, looking at the distribution of
websites and percentage of correctly identified URLs. We see that ExpoSE
performs well, analyzing the majority of websites, since the weight of the
distribution is between the 60% and 90% for dynamically identified URLs.
In some cases, ExpoSE performs very poorly, identifying less than 40%
of the total dynamic URLs on a webpage for pre-fetching, and in cases is
as low as 10%. This is due to webpages with complex JavaScript, where
the cost of executing an instrumented program, or solving path condi-
tions with an SMT solver is infeasible. In these cases, ExpoSE fails to
meaningfully analyze the page, but subsequent improvements in DSE for
JavaScript may alleviate these issues.

6.7.4 Conclusions

Answering RQ1, we find that Oblique outperforms existing speculative
loading technologies at reducing page load times, with a 5.4% improve-
ment over Vroom, 17.3% improvement over RDR, and a 32% improve-
ment over an unmodified browser. While the offline analysis component
of ExpoSE takes longer than prior work, the results are more stable, since
Oblique can support non-deterministic URLs and so analysis only needs
to be run when the website source code changes. As such, we conclude
that a speculative loading engine driven by DSE discovered resource de-
pendencies can decrease page load times notably, outperforming previous
approaches.

Addressing, RQ2, Oblique pre-fetches 77.8% of the dynamically loaded
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URLs for a webpage. Since Oblique only uses the dependencies detected
by ExpoSE to pre-fetch dynamic URLs, we can use this to directly evaluate
the performance of ExpoSE on the tested websites. We see that ExpoSE is
good at finding dynamic URLs in websites, even in those with long depen-
dency chains. While we do not discover all of the dynamically trigerred
URLs, DSE is rarely exhaustive and our models for the DOM are incom-
plete, so this was expected. These results show that ExpoSE is a good
choice when analyzing web applications, since it is able to explore the ma-
jority of dynamically driven URLs on a page.

Overall, while there is room for improvement in the missed pre-fetches
by ExpoSE, we see that DSE is a good option for offline analysis of web-
pages when performing speculative loading.
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In this thesis we have furthered the state of the art in dynamic JavaSript
program analysis through our new tool ExpoSE, which improves upon
prior symbolic execution tools for JavaScript in a number of key areas. Ex-
poSE uses an instrumentation based approach to perform symbolic execu-
tion in a standard interpreter. The engine isolates individual test cases and
does not reuse executions to ensure the correct execution of asynchronous
code and avoid testing artefacts. Concurrent test case execution speeds
up symbolic execution, and makes ExpoSE highly scalable. The modular
design allows tailoring to specific use cases, with ExpoSE supporting the
execution of Node.js and web applications out of the box. ExpoSE can
symbolically encode all JavaScript base types, including strings, arrays,
and objects, but may under-approximate to keep SMT problems feasible.
We use search strategies to decrease coverage plateus, reducing the time
required to achieve useful symbolic execution. The resulting symbolic exe-
cution framework is highly compatible with current JavaScript programs,
scalable, and performs well when exploring popular real JavaScript li-
braries.

Our complete support for ES6 regular expressions allows ExpoSE to ex-
plore deeper into programs. Regular expression modeling in JavaScript is
challenging because JavaScript regular expressions are non-regular, sup-
porting features such as capture groups and backreferences. With a com-
plete encoding, our analysis is still over-approximate due to matching
precedence, which can lead to us generating non-useful test cases. We ad-
dress the problem of matching precedence through a CEGAR refinement
strategy which guides the SMT solver toward a correct assignment for cap-
ture groups in accepted matches. This encoding is particularly important
for ExpoSE because 35% of all NPM packages use regular expressions, and
21% of all NPM packages contain capture groups. With this support Ex-
poSE is able to explore programs which use these features more accurately,
increasing coverage and making bug detection more likely.
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Our support for symbolic objects and arrays also allows us to explore
further into programs. Objects and arrays are hard to model because they
do not have strict structure or typing, but current SMT solvers cannot rea-
son about untyped maps and arrays. Our dynamic approach to object
encoding uses field operations observed at runtime to guide the genera-
tion of new test cases. With this approach we support symbolic inputs but
keep the SMT problems that drive test case generation feasible for current
solvers.

We demonstrate that ExpoSE is capable of executing the intricacies of
JavaScript by generating supplementary conformance tests for JavaScript
native library methods. We generate these new test cases through the sym-
bolic execution of JavaScript polyfill implementations. Each test case is
then used to check a set of known JavaScript implementations for correct-
ness, using a battery of interpreters and differential testing to decide if an
interpreter fails a test. Using this approach, we were able to find several
errors in a widely depended polyfill implementation and extend coverage
of the Test262 suite, showing that our approach to symbolic execution is
capable of reasoning about intricacies of low-level JavaScript code.

By applying ExpoSE to webpage dependency detection we show that
our engine can explore the majority of code on current websites. The
resource dependency constraints we identify during symbolic execution
are used to generate a set of concrete URLs to speculatively load. The
advantage of this approach is support for speculative loading of non-
deterministic URLs, since we use the symbolic representation built up
during analysis with ExpoSE. In evaluation we showed that ExpoSE per-
forms well when symbolically executing webpages, finding the 77.8% of
dynamic dependencies. We also demonstrate that symbolic execution im-
proves the performance over speculative loading when compared to pre-
vious approaches.

Overall, in this thesis, we have shown that the symbolic execution can be
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usefully applied to modern JavaScript. We have developed a highly com-
patible dynamic symbolic execution engine for JavaScript which scales
to real world programs by keeping constraint problems feasible for cur-
rent solvers. The development of automated program analysis tools for
JavaScript opens up new opportunities, not only for improving the stabil-
ity and security of programs but also in other domains, such as improve-
ment web browser performance. We have shown that this new engine
is useful in two domains, conformance test case generation and specu-
lative loading, showing that a JavaScript analysis engine is not limited
to program bug finding and demonstrating the utility of our new tool.
The work presented in this thesis unlocks dynamic symbolic execution
for real-world JavaScript, increasing confidence in software we use every
day while providing a versatile test-bed with which to carry out future
research.
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