
Checking Cryptographic API Usage with
Composable Annotations (Short Paper)

Duncan Mitchell

Department of Computer Science

Royal Holloway, University of London

United Kingdom

L. Thomas van Binsbergen

Department of Computer Science

Royal Holloway, University of London

United Kingdom

Blake Loring

Information Security Group

Royal Holloway, University of London

United Kingdom

Johannes Kinder

Department of Computer Science

Royal Holloway, University of London

United Kingdom

Abstract
Developers of applications relying on cryptographic libraries

can easily make mistakes in their use. Popular dynamic lan-

guages such as JavaScript make testing or verifying such ap-

plications particularly challenging. In this paper, we present

our ongoing work toward a methodology for automatically

checking security properties in JavaScript code. Our main

idea is to attach security annotations to values that encode

properties of interest. We illustrate our idea using examples

and, as an initial step in our line of work, we present a formal-

ization of security annotations in a statically typed lambda

calculus. As next steps, we will translate our annotations to

a dynamically typed formalization of JavaScript such as λJS
and implement a runtime checked type extension using code

instrumentation for full JavaScript.

CCS Concepts • Security and privacy → Software and
application security; • Software and its engineering →

Software verification and validation;

Keywords JavaScript, type systems

ACM Reference Format:
Duncan Mitchell, L. Thomas van Binsbergen, Blake Loring, and Jo-

hannes Kinder. 2018. Checking Cryptographic API Usage with

Composable Annotations (Short Paper). In Proceedings of ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion (PEPM’18). ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3162071

1 Introduction
Increased public awareness of privacy concerns on the In-

ternet has led to software moving toward implementing

PEPM’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in Proceedings of ACM SIGPLANWorkshop on Partial Evaluation and Program
Manipulation (PEPM’18), https://doi.org/10.1145/3162071.

strong cryptography by default, in a trend dubbed “ubiqui-

tous encryption”. For instance, web applications for messag-

ing platforms now routinely implement client-side cryptog-

raphy in JavaScript for true end-to-end encryption. Where

TLS/SSL terminates security at the HTTP server, application-

specific client-side cryptography can help secure modern

distributed environments consisting of cloud-hosted servers

and third-party content-distribution networks. Despite ini-

tial skepticism of browser-based cryptography [1, 16], a di-

verse range of cryptographic libraries and APIs for JavaScript

has evolved over the last ten years. To avoid the pitfalls of

purely JavaScript-based cryptography, the W3C has stan-

dardized the Web Cryptography API (WebCrypto), which is

implemented directly in the browser [24].

The clash between the agile mindset of JavaScript devel-

opers and the requirements of secure software engineering

leads to lingering problems: cryptographic APIs are often

hard to use correctly, and security problems do not lead to

failing test cases or visible errors. Even for a constant key, a

cursory inspection of the encrypted messages will not raise

suspicion. For example, the open source browser extension

Cryptocat for end-to-end encrypted messaging suffered from

critically weak security for over a year due to a subtle type

coercion bug in the use of private keys [22].

Despite several initiatives to verify not just cryptographic

protocols but reference implementations in software [2, 6],

it is not yet feasible to prove correctness of mainstream

implementations. Dynamic languages like JavaScript are no-

toriously difficult to formally reason about: the dynamic type

system and use of reflection thwart the application of expres-

sive type systems or theorem provers without significant

manual intervention by cryptographic experts [3, 14].

In this paper, we describe our work in progress toward a

new approach for checking the use of cryptographic APIs

in client code that is compatible with the dynamic type sys-

tem and common design patterns of JavaScript. Our goal

is to arrive at an automatic testing methodology that does

not require manual analysis by cryptographic experts. Our

main idea is to use a system of security annotations that is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/132609381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3162071
https://doi.org/10.1145/3162071
https://doi.org/10.1145/3162071


PEPM’18, January 8–9, 2018, Los Angeles, CA, USA D. Mitchell et al.

orthogonal to the existing type system. Security annotations

express security properties of values, e.g., whether a value

is a key of a certain length, or a cryptographically secure

random value. They are propagated alongside regular type

tags but follow their own semantics. Security annotations

should be transparent to client code until they encounter an

error, in which case the test program should fail.

We break down our research program into three phases:

(i) formalization of security annotations and validation of

our idea in a statically typed lambda calculus; (ii) adapta-

tion to the dynamic type system of a formal description of

JavaScript semantics such as λJS [11]; (iii) implementation

for full JavaScript using code instrumentation [19].

We motivate our work using examples of JavaScript code

that show how the full system of annotations—once imple-

mented—could help to detect bugs in cryptographic API us-

age (§2). Security type annotations are added to the signature

of an API function to specify required security properties on

arguments (preconditions) and ensure security properties

specified as annotation tags on return values or referenced

objects (postconditions). We formally define composable se-

curity annotations as a lattice model and provide its notion of

subtyping as well as the intricacies required to allow adding

or removing annotations (§3). We then present step (i) of

the research program outlined above, a formal definition

and prototype implementation of a statically typed lambda

calculus with security annotations (§4). We discuss the im-

plications of type safety in our lambda calculus and required

steps to continue our work (§5) before we compare to related

work (§6) and conclude (§7).

2 Introducing Security Annotations
We begin by illustrating our idea of security annotations

through two examples of security-critical JavaScript.

2.1 Example 1: Key Truncation
Listing 1 uses theWebCrypto API to create a random key and

encrypt a message, but a security bug in line 7 causes eight

bits of the key to be overwritten. To follow the control flow

of the example, note that it relies on promises, a mechanism

for asynchronous code execution heavily used inWebCrypto:

APImethods such as importKey immediately return a Promise

object, whose method then takes a function to be executed

once the operation is completed. The result of the operation

is passed to this function as an argument.

We introduce two security annotations to illustrate how

our approach would detect the bug at runtime: CryptKey de-

notes that a value is a valid key, and CSRV that a value is a

cryptographically secure random value. The importKey API

ensures that the resulting key has the CryptKey annotation

attached; getRandomValues ensures that it returns the array

passed as an argument with the CSRV annotation attached.

The encrypt API requires its key argument to be annotated

1 let c = crypto, cs = c.subtle;

2 let pt = new TextEncoder().encode("my message");

3 let iv = c.getRandomValues(new Uint8Array(12));

4 let alg = { name: "AES-GCM", iv: iv };

5 let rnd = c.getRandomValues(new Uint8Array(32));

6

7 if (...) { rnd[3] = 3; }

8 cs.importKey("raw", rnd, alg, false, ["encrypt"])

9 .then(function(key) {

10 cs.encrypt(alg, key, pt).then(function(ct) {

11 console.log(new Uint8Array(ct));

12 });

13 });

Listing 1.A simple example ofWebCrypto usage in which

the security of the encryption is undermined.

with both CryptKey and CSRV (enforcing random session keys).

The pre- and postconditions can be checked during testing;

concretely, postconditions cause security annotations as ad-

ditional type tags; preconditions check whether required

annotations are present and throw an exception otherwise.

Security annotation tags are attached to values during exe-

cution. They are introduced and dropped through annotated

postconditions of API functions or the dynamic semantics

of operations. At runtime, the CSRV annotation is attached to

the Uint8Array object passed to getRandomValues. However,

the semantics for assignment will be defined such that mod-

ifying one of the array elements causes the array to lose the

CSRV annotation, as it is no longer a secure random value.

As a result the precondition check to fail upon entering the

encrypt function on line 10.

2.2 Example 2: Establishing a Session in Signal
The library libsignal-js is used by the JavaScript-based

desktop application for the Signal messaging platform. It

provides cryptographic functionality through frontends for

WebCrypto and primitives compiled from trusted C code

to JavaScript. We discuss through example how annotating

these primitives and the WebCrypto API can help test soft-

ware using libsignal-js for security property violations.

Listing 2 demonstrates the flexibility of placing precondi-

tion enforcement burdens on trusted API calls rather than

developer code. This function acts as a wrapper for a trusted

elliptic curve library—in principle, we would annotate each

API of this library in the same manner as proposed for

WebCrypto. This function takes as argument a private key,

asynchronously constructs a corresponding public key, and

returns the public-private key pairing. The function getRand-

omBytes acts as a wrapper for WebCrypto’s getRandomValues,

which we annotate in the same manner as §2.1. A central

advantage of our approach is that it allows to bypass the

inherent ad-hoc polymorphism of this function: annotating



Checking Crypto API Usage with Composable Annotations PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

1 createKeyPair: function(privKey) {

2 if (privKey === undefined) {

3 privKey = Internal.crypto.getRandomBytes(32);

4 }

5 return
Internal.Curve.async.createKeyPair(privKey);

6 }

Listing 2. The Internal.Curve.createKeyPair function in
src/Curve.js of libsignal-js.1

createKeyPair by hand, one would have to account for a

variable signature of the function leading to a complex and

unintuitive description. By annotating only trusted APIs, we

need not worry about about the polymorphism: instead of

checking preconditions at the boundaries of the developer’s

code, we simply check preconditions at each API call.

3 A Lattice of Security Annotations
This section details the usage of security annotations within

our approach. Annotations are declared locally in a library

such that they induce a lattice embedding a hierarchy only

on those annotations used by the library. We also introduce

useful operators for manipulating annotations.

Declaration and composition. Cryptographic APIs have
arguments and return values with several distinct security

properties. For example, recall WebCrypto’s encrypt API

from §2.1, which enforces two security properties on the key

argument, expressed via the annotations CSRV and CryptKey;

these annotations are distinct—some cryptographic keys are

not directly computed as random values (e.g., public keys).

Since distinct security annotations are required for different

trusted libraries, we propose that security annotations are

declared on a per library basis. Thus, program testing only

involves those annotations declared in the libraries used by

the program. The composition of two or more annotations is

expressed via the symmetric and associative operator ∗. For

example, a value annotated with CryptKey * CSRV has both

the CryptKey and CSRV security properties.

Hierarchies of annotations. Security properties have de-

grees of specificity, e.g., the property that a value is a crypto-

graphic key is less specific than that of a private key. Anno-

tations should thus not just be compositional but also have

natural subtyping-like structures. We further propose that

annotations may be declared as extensions of previously de-

clared annotations, indicating that an annotation is more

specific than any annotation it extends. For example, we

write SecAnn PrivKey extends CryptKey to say that PrivKey

1https://github.com/WhisperSystems/libsignal-protocol-javascript,
retrieved September 2017.

represents a more specific property than CryptKey. A collec-

tion of declarations induces a subannotation relation ≺:, i.e.,

the declaration above determines that PrivKey ≺: CryptKey.

The annotation lattice. We can naturally extend subanno-

tations to annotations composed by ∗ as well. Formally, this

is achieved by describing the extension of subannotations in

two rules, [S-Width] and [S-Depth] (see Figure 3), inspired

by record typing [15]. [S-Width] describes the intuition

that composing a number of annotations is more specific

than composing a subset of them. [S-Depth] encodes that

individual subannotation relationships also extend over com-

position. These judgments, together with those defined by

the extends declarations, induce a partial ordering of the

program annotations and in turn a lattice of security annota-

tions for each program under test. Top—the empty element—

intuitively represents a lack of valid security properties.

Operators on annotations We define two additional op-

erators of interest, the definitions of which are dependent on

the individual program’s annotation lattice. The first is the

natural least upper bound operator, ⊔, which finds the most

specific annotation in the lattice such that both operands

are a subannotation of it. The second operator is cut, which

is motivated by the idea that security properties should be

discarded when they are no longer valid. There is a subtlety

here: superannotations of a removed annotation should still

be valid when they are explicitly removed. For example the

result of cut(PrivKey*CSRV, PrivKey) is CryptKey * CSRV, the

most specific annotation such that PrivKey is no longer valid.

We define cut(S1, S2) formally as the unique annotation R
with S1 ≺: R and R ⊀: S2 such that if there is some other S
also satisfying these properties, then R ≺: S and S ⊀: R.

4 Formalizing Security Annotations
We present a minimal typed lambda calculus

2
with security

annotations. We construct this small calculus to ensure the

correctness and feasibility of the approach; a discussion of

the translation of this formalization to dynamic languages

is contained in §5. The calculus adds security annotations,

which are defined for individual programs and manipulated

through specific keywords. We outline the syntax of this

calculus (§4.1), describe its dynamics (§4.2) and statics (§4.3),

and discuss specific notions of type safety (§4.4).

4.1 Syntax
The syntax for the lambda calculus is given in Figure 1, which

differs from that of a standard lambda calculus in several

ways. Firstly, values in this calculus comprise a prevalue,

corresponding to the values of a traditional lambda calcu-

lus, and a security annotation S . This allows us to represent

how security properties on individual values change over

2
A prototype implementation in Haskell of our calculus is available at

https://github.com/ltbinsbe/lambda-security-tags.

https://github.com/WhisperSystems/libsignal-protocol-javascript
https://github.com/ltbinsbe/lambda-security-tags


PEPM’18, January 8–9, 2018, Los Angeles, CA, USA D. Mitchell et al.

P ::= programs:
D . . .D [t]i annotations and program term

D ::= Annotation Declarations:
SecAnn a new annotation

SecAnn a extends a annotation inheritance

t ::= terms:
x variable

v annotated value

λx : T<S>.t abstraction

t t application

if t then t else t conditional

let x = t in t let binding

t as S annotation introduction

t drop S annotation removal

w ::= prevalues:
λx : T<S>.t abstraction prevalue

true true prevalue

false false prevalue

v ::= annotated values:
w<S> annotated prevalue

S ::= security annotations:
a security annotation

S ∗ S annotation composition

Top empty annotation

T ::= pretypes:
Bool pretype of Booleans

A→ A pretype of functions

A ::= annotated types:
T<S> annotated type

Γ ::= contexts:
∅ empty context

Γ,x : T<S> term variable binding

Figure 1. Syntax of the lambda calculus.

time. Annotations are modified via the as and drop keywords.

An as adds annotations, representing newly valid security

properties, while drop removes the annotations, representing

security properties that are no longer valid. Secondly, pro-

grams are prepended by a series of annotation declarations,
as described in §3, which define the annotations available in

the program together with the lattice they induce.

4.2 Dynamic Semantics
The evaluation rules, presented in Figure 2, follow those of a

standard lambda calculus [15], extended with the as and drop

constructs. As standard, [x 7→ v] t denotes the substitution
of the value v in place of the free occurrences of variable x
in term t . The rules for the if construct explicitly refer to

prevalues in order to decide which branch to take. The rules

for as and drop state that the result of evaluating t as S or

[E-App1]

t1 → t ′
1

t1 t2 → t ′
1
t2

[E-App2]

t2 → t ′
2

t1 t2 → t1 t
′
2

[E-AppAbs] (λx : T<S>.t )<S ′> v → [x 7→ v] t

[E-LetV] let x = v in t → [x 7→ v] t

[E-Let]

t1 → t ′
1

let x = t1 in t2 → let x = t ′
1
in t2

[E-IfTrue] if true<S> then t2 else t3 → t2

[E-IfFalse] if false<S> then t2 else t3 → t3

[E-If]

t1 → t ′
1

if t1 then t2 else t3 → if t ′
1
then t2 else t3

[E-AsV] w<S1> as S2 → w<S1 ∗ S2>

[E-DropV] w<S1> drop S2 → w<cut(S1, S2)>

[E-As]

t → t ′

t as S → t ′ as S
[E-Drop]

t → t ′

t drop S → t ′ drop S

Figure 2. Dynamic semantics of the lambda calculus.

[S-Sub]

Γ ⊢ t : T<S1> S1 ≺: S2

Γ ⊢ t : T<S2>

[S-ArrowSub]

S2 ≺: S1 S3 ≺: S4 Γ ⊢ t : (T1<S1> → T2<S3>)<S>

Γ ⊢ t : (T1<S2> → T2<S4>)<S>

[S-Width]

∗n+ki=1 Si ≺: ∗
n
i=1Si

[S-Depth]

for each i, S ′i ≺: Si

∗ni=1S
′
i ≺: ∗

n
i=1Si

Figure 3. Hierarchical security annotation judgments.

t drop S is the result of evaluating t with possibly updated

annotations. In the case of as, new security properties are

added (or existing ones strengthened) by composing the

original annotationwith S ; for drop, annotations are removed

by cutting S from the original annotation (see §3).

4.3 Static Semantics
Figures 3 and 4 present inference rules defining the static

type system. We describe first rules relating to subannota-

tions and then discuss other rules of particular interest.

Judgments for hierarchical security annotations. Recall-
ing the discussion in §3, we embed this lattice of annotations

into the type system. The first two rules of Figure 3 are stan-

dard subsumption rules enriched with annotations; they en-

sure that a term will type-check as any subannotation of the

one attached: if a term is valid for many security properties,

then it must still be valid for each individually. The lattice is

encoded by the [S-Width] and [S-Depth], described in §3.



Checking Crypto API Usage with Composable Annotations PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

[T-Var]

x : T<S> ∈ Γ

Γ ⊢ x : T<S>

[T-True] true<S> : Bool<S> [T-False] false<S> : Bool<S>

[T-Abs]

Γ,x : T1<S1> ⊢ t : T2<S2>

Γ ⊢ (λx : T1<S1>.t )<S3> : (T1<S1> → T2<S2>)<S3>

[T-App]

Γ ⊢ t1 : (T1<S1> → T2<S2>)<S3> Γ ⊢ t2 : T1<S1>

Γ ⊢ t1 t2 : T2<S2>

[T-Let]

Γ ⊢ t1 : T1<S1> Γ,x : T1<S1> ⊢ t : T2<S2>

Γ ⊢ let x = t1 in t2 : T2<S2>

[T-If]

Γ ⊢ t1 : Bool<> Γ ⊢ t2 : T2<S2> Γ ⊢ t3 : T3<S3>

Γ ⊢ if t1 then t2 elset3 : T2<S2 ⊔ S3>

[T-As]

Γ ⊢ t : T<S1>

Γ ⊢ t as S2 : T<S1 ∗ S2>

[T-Drop]

Γ ⊢ t : T<S1>

Γ ⊢ t drop S2 : T<cut(S1, S2)>

Figure 4. Typing judgments for the lambda calculus.

1 SecAnn A

2 SecAnn B

3 SecAnn C extends A

4 SecAnn D extends C

5

6 if true<> then true<D*B> else false<A*B>

Listing 3. Typing the if construct.

The if statement. In typing the if construct we want to

retain the maximal amount of information possible without

over-complicating our annotation lattice (e.g., via sum-like

annotations). It is intuitive to consider the most expressive

annotation valid along both branches (i.e. the ⊔ operator);

consider the trivial example in Listing 3. Since both C and D

are not valid along the else branch, they cannot be suban-

notations of the resulting annotation. We therefore type this

as Bool<A*B> = Bool<D*B ⊔ A*B>. The type after evaluating

the program will be a subtype of this; this consequence of

allowing a more expressive construct is discussed in §5.

Adding and removing security annotations. The typing
rules for as and drop reflect that t as S and t drop S evalu-

ate to the same prevalue as t with (possibly) modified annota-

tions. The modified annotation corresponds to the prevalue’s

annotation at runtime, as determined by ∗ and cut.

4.4 Annotated Type Safety
The classical notion of type safety within this calculus merits

discussion: type safety in this calculus is important to ensure

that the flexible system of annotations introduced does not

result in the ability of invalid programs to pass type checks.

We formulate a notion of type safety based on the traditional

notions of (i) progress and (ii) preservation [15], which we

adapt to incorporate security annotations:

(i) A well-typed term is either a value, or can take a step

of evaluation according to the rules in Figure 2.

(ii) If a well-typed term takes a step of evaluation, then

the resulting term is also well-typed, i.e. if t : T<S> and
t → t ′, then there is some S ′ ≺: S such that t ′ : T<S ′>.

Here, a term t is well-typed if there is some type T and secu-

rity annotation S such that t : T<S>. A proof of these twin

statements is straightforward and is therefore omitted. The

differing notion of (ii) reflects our if construct, however

we are unconcerned by this: programs cannot type as valid

when they do not possess the necessary security properties.

5 Discussion
We discuss the lambda calculus and the formalization of secu-

rity annotations in full dynamic languages, e.g., JavaScript.

On annotated type safety. Since security annotations can

be arbitrarily modified inline by the programmer, it is pos-

sible to circumvent the notion of type safety by assigning

annotations to terms to arbitrarily pass any type check; the

developer would simply lose the benefits of using security

annotations to enforce correct preconditions of secure APIs.

Dynamic enforcement of annotations. We intend this no-

tion of annotations as a first step toward dynamic enforce-

ment of security properties in JavaScript: we have constructed

a kernel representation of this within a formal setting and

demonstrated the guarantees which accompany this pre-

sentation. The transition to dynamic checking of security

annotations within the calculus presented in §4 is straightfor-

ward: values comprise prevalues and annotations, so we can

directly alter the evaluation rules to introduce enforcement

mechanisms, i.e., the [E-AppAbs] rule would become

[E-AppAbs’]

v = w<S1> S1 ≺: S2

(λx : T<S2>.t )<S3> v → [x 7→ v] t
.

This dynamically ensures the annotation is valid; a second

evaluation rule would throw a security exception in the event

that S1 ⊀: S2. This is the first step; next, we plan to translate

this model into an existing formal semantics for JavaScript,

such as λJS [11].

Annotation-polymorphic functions. There is one further
challenge within the central concept of checking security

properties via attaching annotations as postconditions to

functions. Namely, many functions will have distinct valid

postconditions dependent on the security properties of the

supplied value. For example, consider the JavaScript func-

tion window.btoa which takes a string and returns a Base64

encoded string. Clearly, any security properties valid on the

argument should be still valid on the return value. Therefore,

if the annotation passed to the function is S , we would expect



PEPM’18, January 8–9, 2018, Los Angeles, CA, USA D. Mitchell et al.

1 SecAnn Encoding

2 SecAnn Base64 extends Encoding

3

4 (let myBtoa = λ x : String<S>.

5 (((cpAnn x (window.btoa x)) drop Encoding) as

Base64)

6 in myBtoa "SecretKey"<S>

Listing 4. Enforcing the security properties of btoa.

the annotation of the returned value to be cut(S, encoding) ∗
Base64. In a purely static setting, annotation variables would

be required to achieve this typing. However, in the dynamic

setting we can introduce an operator cpAnn which copies the

annotations from one term to another, e.g., via

[E-cpAnnV]

v1 = w1<S1> v2 = w2<S2>

cpAnnv1 v2 → w2<S1 ∗ S2>
.

Intuitively, this suffices in the dynamic setting: functions at

most destroy every annotation on entry, or they manipulate

the annotations present on a value by adding some fixed

annotations or removing fixed annotations, representing the

security properties of the function. This allows the propa-

gation of security annotations through our dynamic system.

As a simple example of this construct, we consider a wrapper

myBtoa around a library function window.btoa in a language

much like the one described in §4 with strings. In order to

describe the security properties of such a function, we con-

sider the example function in Listing 4. Here, the program

will evaluate to a value with the desired annotation.

6 Related Work
Type systems for security property enforcement have been

advocated by Bhargavan et al. [2, 5, 6, 9]. The dependently

typed languages F7 and F* [20] seek to statically verify se-

curity properties in F# code. Security type systems [17] aug-

ment types with annotations specifying policies for secure

information flow. Our approach is similar to this, but heavily

relies on annotations changing over time, which in secu-

rity type systems only occurs during declassification. Type

qualifiers [8] are another related concept. They provide an

extension of the type system via composable qualifiers that

represent properties of the program terms; however, type

qualifiers are ill-suited to untyped scripting languages [12].

Work extending the expressiveness of JavaScript’s type

system often builds distinct dialects [7, 23]. Such approaches,

including industry tools Flow or TypeScript, allow for over-

approximate static checking of programs that are written

specifically in these dialects. TreatJS [13] is a higher-order

design-by-contract system for run-time checking code con-

tracts with native JavaScript: however, properties such as

valid key generation cannot be encoded as native assertions

without further instrumentation.

The work of Taly et al. [21] describes an automated anal-

ysis for security-critical JavaScript APIs that complements

ours. We assume that the APIs themselves are secure but

construct a mechanism to ensure correct API usage. Pro-

Script [3, 14] is a domain-specific language for cryptographic

protocols that builds on Defensive JavaScript [4] to allow

developers and cryptography experts to work together to in-

corporate verified protocol implementations into JavaScript

applications.We propose amethodology enabling developers

to gain feedback on their implementation without requiring

help by cryptography experts.

Recent work has demonstrated the tractability of logic-

based symbolic verification techniques for JavaScript [18],

building upon previous work [10] toward the semi-automatic

verification of JavaScript programs. To verify individual pro-

grams, one must write precise logical specifications for each

function: this can provide strong guarantees at the cost of

requiring significant manual intervention by developers.

7 Conclusions and Future Work
In this paper we have presented the first step toward a new

approach for the checking of cryptographic libraries usage

within JavaScript. Our methodology places at a premium the

need for any solution to be usable by non-expert develop-

ers. The annotation of trusted cryptographic libraries with

pre- and postconditions in the form of security annotations

promises to enable fully automatic testing for violations of

the assumptions upon which security proofs rely.

We described the first stage of our research program by

validating the concept within a statically typed lambda cal-

culus, and presented a formal model of composable security

annotations. We discussed the challenges for the next step of

this approach in transforming our current construction to the

dynamic setting, describing additional constructs required

to handle real-world JavaScript code.

We aim to continue the research program by adapting our

formalization to the dynamic setting using existing formal-

izations of JavaScript semantics such as λJS [11]. Finally, we
will implement security annotations as a language extension

to JavaScript using source code instrumentation. This allows

to check API usage in a manner transparent to the code un-

der test. Finally, we aim to develop a thorough set of pre-

and postconditions for widespread cryptographic libraries,

in particular the WebCrypto API.

Acknowledgments
We thank the anonymous reviewers for their valuable feed-

back, and James Patrick-Evans and Claudio Rizzo for their

comments on an early draft of this paper. This work has

been supported by the Centre for Doctoral Training in Cy-

ber Security (EP/K035584/1) and the UK Research Institute

in Verified Trustworthy Software Systems.



Checking Crypto API Usage with Composable Annotations PEPM’18, January 8–9, 2018, Los Angeles, CA, USA

References
[1] Tony Arcieri. 2013. What’s wrong with in-browser cryptography?

https://tonyarcieri.com/whats-wrong-with-webcrypto (Last accessed:
22 November 2017).

[2] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D.

Gordon, and Sergio Maffeis. 2011. Refinement Types for Secure Imple-

mentations. ACM Trans. Program. Lang. Syst. 33, 2 (2011), 8:1–8:45.
[3] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017.

Verified Models and Reference Implementations for the TLS 1.3 Stan-

dard Candidate. In IEEE Symp. on Security and Privacy (S&P).
[4] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio Maffeis.

2014. Defensive JavaScript – Building and Verifying Secure Web Com-

ponents. In Foundations of Security Analysis and Design VII (FOSAD).
[5] Karthikeyan Bhargavan, Cédric Fournet, andNataliya Guts. 2010. Type-

checking Higher-Order Security Libraries. In Asian Symp. on Program-
ming Languages and Systems (APLAS).

[6] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo

Pironti, and Pierre-Yves Strub. 2013. Implementing TLS with Verified

Cryptographic Security. In IEEE Symp. on Security and Privacy (S&P).
[7] Ravi Chugh, David Herman, and Ranjit Jhala. 2012. Dependent Types

for JavaScript. InACM SIGPLANConf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[8] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A

Theory of Type Qualifiers. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI).

[9] Cédric Fournet, Karthikeyan Bhargavan, and Andrew D. Gordon. 2011.

Cryptographic Verification by Typing for a Sample Protocol Imple-

mentation. In Foundations of Security Analysis and Design VI (FOSAD).
[10] Philippa Gardner, Sergio Maffeis, and Gareth David Smith. 2012. To-

wards a Program Logic for JavaScript. In ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages (POPL).

[11] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The

Essence of JavaScript. In European Conf. on Object-Oriented Program-
ming (ECOOP).

[12] Nenad Jovanovic, Christopher Krügel, and Engin Kirda. 2006. Pixy:

A Static Analysis Tool for Detecting Web Application Vulnerabilities

(Short Paper). In IEEE Symp. on Security and Privacy (S&P).

[13] Matthias Keil and Peter Thiemann. 2015. TreatJS: Higher-Order Con-

tracts for JavaScripts. In European Conf. on Object-Oriented Program-
ming (ECOOP).

[14] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017.

Automated Verification for Secure Messaging Protocols and Their

Implementations: A Symbolic and Computational Approach. In IEEE
European Symp. on Security and Privacy (EuroS&P).

[15] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT

Press.

[16] Thomas Ptacek. 2011. JavaScript Cryptography Considered Harm-

ful. https://www.nccgroup.trust/us/about-us/newsroom-and-events/
blog/2011/august/javascript-cryptography-considered-harmful/ (Last
accessed: 22 November 2017).

[17] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-Based

Information-Flow Security. IEEE Journal on Selected Areas in Commu-
nications 21, 1 (2003), 5–19.

[18] José Fragoso Santos, Philippa Gardner, Petar Maksimovic, and Daiva

Naudziuniene. 2017. Towards Logic-Based Verification of JavaScript

Programs. In Int. Conf. on Automated Deduction (CADE).
[19] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon

Gibbs. 2013. Jalangi: A Selective Record-Replay and Dynamic Analysis

Framework for JavaScript. In Joint Meeting of the European Software
Engineering Conf. and the ACM SIGSOFT Symp. on the Foundations of
Software Engineering, (ESEC/FSE).

[20] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub,

Karthikeyan Bhargavan, and Jean Yang. 2011. Secure Distributed

Programming with Value-Dependent Types. In ACM SIGPLAN Int.
Conf. on Functional Programming (ICFP).

[21] Ankur Taly, Úlfar Erlingsson, John C. Mitchell, Mark S. Miller, and

Jasvir Nagra. 2011. Automated Analysis of Security-Critical JavaScript

APIs. In IEEE Symp. on Security and Privacy (S&P).
[22] Steve Thomas. 2013. Decryptocat. https://tobtu.com/decryptocat.php

(Last accessed: 22 November 2017).

[23] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. 2016. Refine-

ment Types for TypeScript. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI).

[24] Mark Watson. 2017. Web Cryptography API. W3C Recommendation.

W3C. https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/.

https://tonyarcieri.com/whats-wrong-with-webcrypto
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://tobtu.com/decryptocat.php

	Abstract
	1 Introduction
	2 Introducing Security Annotations
	2.1 Example 1: Key Truncation
	2.2 Example 2: Establishing a Session in Signal

	3 A Lattice of Security Annotations
	4 Formalizing Security Annotations
	4.1 Syntax
	4.2 Dynamic Semantics
	4.3 Static Semantics
	4.4 Annotated Type Safety

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

