164 research outputs found

    Imaging of acute versus pathological pain in humans

    Full text link
    Pain subserves different functions. Acute pain from the intact body alerts the victim to immediately react and withdraw from the bodily threat, ideally before an injury happens. However, during manifest injury and tissue inflammation, withdrawal and flight are no longer adaptive. Instead, sparing the affected body part to promote healing requires heightened awareness and avoidance behaviour over longer periods of time. Quality and time scales of behavioural adaptations are therefore substantially different between pain during normal compared to abnormal tissue states. Given these functional differences we postulated that the two phenomena also recruit different forebrain systems. We used positron emission tomography (PET) and subtracted scans obtained during painful heating of normal skin from scans during equally intense but normally non‐painful heating of capsaicin‐treated skin. This comparison reveals the specific activation of a medial thalamic pathway to limbic forebrain structures such as anterior insula, perigenual anterior cingulate, ventral striatum, and prefrontal cortex during pain originating in the chemically sensitised skin. It is possible that the unique forebrain recruitment by pain under a patho‐physiological tissue status is caused by a significantly greater facilitation of the multi‐synaptic projections from the spino‐parabrachial tract of the superficial dorsal horn to the medial thalamus compared to deeper and direct lateral thalamic projections from the spino‐thalamic tract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90056/1/j.ejpain.2004.07.009.pd

    Eruption of ammonia-water cryomagmas on Titan 1: crystallisation and cooling during ascent

    Get PDF
    We are developing a semi-analytical model for the ascent of methane-expansion driven ammonia-water cryomagmas on Titan. The range of different crystal fractions resulting from decompression may help to explain the range of apparent rheological properties inferred for surface features

    Magnetic resonance for assessment of axillary lymph node status in early breast cancer: A systematic review and meta-analysis

    Get PDF
    Introduction Current methods of identifying axillary node metastases in breast cancer patients are highly accurate, but are associated with several adverse events. This review evaluates the diagnostic accuracy of magnetic resonance imaging (MRI) techniques for identification of axillary metastases in early stage newly diagnosed breast cancer patients. Methods Comprehensive searches were conducted in April 2009. Study quality was assessed. Sensitivity and specificity were meta-analysed using a bivariate random effects approach, utilising pathological diagnosis via node biopsy as the comparative gold standard. Results Based on the highest sensitivity and specificity reported in each of the nine studies evaluating MRI (n = 307 patients), mean sensitivity was 90% (95% CI: 78–96%; range 65–100%) and mean specificity 90% (95% CI: 75–96%; range 54–100%). Across five studies evaluating ultrasmall super-paramagnetic iron oxide (USPIO)-enhanced MRI (n = 93), mean sensitivity was 98% (95% CI: 61–100%) and mean specificity 96% (95% CI: 72–100%). Across three studies of gadolinium-enhanced MRI (n = 187), mean sensitivity was 88% (95% CI: 78–94%) and mean specificity 73% (95% CI: 63–81%). In the single study of in-vivo proton MR spectroscopy (n = 27), sensitivity was 65% (95% CI: 38–86%) and specificity 100% (95% CI: 69–100%). Conclusions USPIO-enhanced MRI showed a trend towards higher sensitivity and specificity and may make a useful addition to the current diagnostic pathway. Additional larger studies with standardised methods and standardised criteria for classifying a node as positive are needed. Current estimates of sensitivity and specificity do not support replacement of SLNB with any current MRI technology in this patient group

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV Îł\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    Accounting for International War: The State of the Discipline

    Full text link
    In studies of war it is important to observe that the processes leading to so frequent an event as conflict are not necessarily those that lead to so infrequent an event as war. Also, many models fail to recognize that a phenomenon irregularly distributed in time and space, such as war, cannot be explained on the basis of relatively invariant phenomena. Much research on periodicity in the occurrence of war has yielded little result, suggesting that the direction should now be to focus on such variables as diffusion and contagion. Structural variables, such as bipolarity, show contradictory results with some clear inter-century differences. Bipolarity, some results suggest, might have different effects on different social entities. A considerable number of studies analysing dyadic variables show a clear connection between equal capabilities among contending nations and escalation of conflict into war. Finally, research into national attributes often points to strength and geographical location as important variables. In general, the article concludes, there is room for modest optimism, as research into the question of war is no longer moving in non-cumulative circles. Systematic research is producing results and there is even a discernible tendency of convergence, in spite of a great diversity in theoretical orientations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69148/2/10.1177_002234338101800101.pd

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the ÎœÎœÂŻÂŻÂŻbbÂŻÂŻ, ℓ+ℓ−bbÂŻÂŻ, or ℓ±ΜbbÂŻÂŻ final states, where ℓ = e or ÎŒ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (ttÂŻ) charge asymmetry AttÂŻC and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive ttÂŻ charge asymmetry is measured to be AttÂŻC = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the ttÂŻ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    Search for single production of vector-like T quarks decaying into Ht or Zt in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for the single production of an up-type vector-like quark (T) decaying as T → Ht or T → Zt. The search utilises a dataset of pp collisions at s√ = 13 TeV collected with the ATLAS detector during the 2015–2018 data-taking period of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Data are analysed in final states containing a single lepton with multiple jets and b-jets. The presence of boosted heavy resonances in the event is exploited to discriminate the signal from the Standard Model background. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross section of T quarks in different decay channels. The results are interpreted in several benchmark scenarios to set limits on the mass and universal coupling strength (Îș) of the vector-like quark. For singlet T quarks, Îș values above 0.53 are excluded for all masses below 2.3 TeV. At a mass of 1.6 TeV, Îș values as low as 0.35 are excluded. For T quarks in the doublet scenario, where the production cross section is much lower, Îș values above 0.72 are excluded for all masses below 1.7 TeV, and this exclusion is extended to Îș above 0.55 for low masses around 1.0 TeV
    • 

    corecore