7 research outputs found

    A network model of the function and dynamics of hippocampal place-cell sequences in goal-directed behavior

    No full text
    Die sequenzielle Aktivität von Ortszellen im Hippocampus entspricht vielfach früheren Erlebnissen, was auf eine Rolle in Gedächtnisprozessen hinweist. Jüngere experimentelle Befunde zeigen allerdings, dass Zielorte in sequenzieller Aktivität überrepräsentiert sind. Dies legt eine Rolle dieser Aktivitätsmuster in der Verhaltensplanung nahe, wobei ein detailliertes Verständnis sowohl des Ursprungs als auch der Funktion von Ortszellsequenzen im Hippocampus bislang fehlt. Insbesondere ist nicht bekannt, welcher Mechanismus solche Sequenzen auf adaptive und konstruktive Weise generiert, wodurch effizientes Planen ermöglicht würde. Um der Beantwortung dieser Fragen näher zu kommen, stelle ich ein neu entwickeltes pulscodiertes Netzwerkmodell vor, in dem räumliches Lernen und die Generierung von Sequenzen untrennbar voneinander abhängig sind. Anhand von Simulationen zeige ich, dass dieses Modell die Erzeugung von noch nicht erlebten Sequenztrajektorien in bekannten Umgebungen erklärt, was deren Nutzen für flexible Pfadplanung hervorhebt. Zusätzlich stelle ich die Ergebnisse eines detaillierten Vergleichs zwischen simulierten neuronalen Pulsfolgen und experimentellen Daten auf der Ebene der Populationsdynamik vor. Diese Resultate zeigen, wie sequenzielle räumliche Repräsentationen durch die Interaktion zwischen lokaler oszillatorischer Dynamik und externen Einflüssen geprägt werden.:1. Introduction 2. Neurobiological and theoretical accounts of hippocampal function 3. A computational model of place-cell sequences for goal-finding 4. A statistical note on step size decoding in place-cell sequences 5. Summary and Discussion BibliographyHippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, I propose a spiking network model of spatial learning and sequence generation as interdependent processes. Simulations show that this model explains the generation of never-experienced sequence trajectories in familiar environments and highlights their utility in flexible route planning. In addition, I report the results of a detailed comparison between simulated spike trains and experimental data, at the level of network dynamics. These results demonstrate how sequential spatial representations are shaped by the interaction between local oscillatory dynamics and external inputs.:1. Introduction 2. Neurobiological and theoretical accounts of hippocampal function 3. A computational model of place-cell sequences for goal-finding 4. A statistical note on step size decoding in place-cell sequences 5. Summary and Discussion Bibliograph

    Effects of L-Dopa on grid-like activity

    No full text
    Data, code, and manuscript pdf related to the article "Levodopa suppresses grid-like activity and impairs spatial learning in novel environments in healthy young adults

    Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model

    Get PDF
    Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions

    Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model

    No full text
    Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions

    A large-scale neurocomputational model of spatial cognition integrating memory with vision

    No full text
    We introduce a large-scale neurocomputational model of spatial cognition called ’Spacecog’, which integrates recent findings from mechanistic models of visual and spatial perception. As a high-level cognitive ability, spatial cognition requires the processing of behaviourally relevant features in complex environments and, importantly, the updating of this information during processes of eye and body movement. The Spacecog model achieves this by interfacing spatial memory and imagery with mechanisms of object localisation, saccade execution, and attention through coordinate transformations in parietal areas of the brain. We evaluate the model in a realistic virtual environment where our neurocognitive model steers an agent to perform complex visuospatial tasks. Our modelling approach opens up new possibilities in the assessment of neuropsychological data and human spatial cognition

    Bibliography

    No full text
    corecore