5,170 research outputs found

    X-Ray Fluorescence Analysis of Fine Atmospheric Aerosols from a Site in Mexico City

    Get PDF
    A study was performed in the Winter of the year 2015 in a Southwestern site in the MAMC (Ciudad Universitaria), collecting PM2.5 samples with a Mini Vol. As a part of wider study focused to fully characterize aerosols at this site, an X-ray Fluorescence (XRF) spectrometer (based on an Rh X-ray tube) built to analyze environmental samples, was used to characterize the sample set. A total of 16 elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) were detected in most samples and mean concentrations were calculated. Cluster analysis was also applied to the elemental concentrations to find possible correlations among the elements

    A DFT approach to the surface-enhanced raman scattering of 4-cyanopyridine adsorbed on silver nanoparticles

    Get PDF
    A Surface-Enhanced Raman Scattering (SERS) spectrum of 4-cyanopyridine (4CNPy) was recorded on silver plasmonic nanoparticles and analyzed by using Density Functional Theory (DFT) calculations. Two simple molecular models of the metal\u20134CNPy surface complex with a single silver cation or with a neutral dimer (Ag+ \u20134CNPy, Ag2 \u20134CNPy), linked through the two possible interacting sites of 4CNPy (aromatic nitrogen, N, and nitrile group, CN), were considered. The calculated vibrational wavenumbers and intensities of the adsorbate and the isolated species are compared with the experimental Raman and SERS results. The analysis of the DFT predictions and the experimental data indicates that 4CNPy adsorbs preferentially on neutral/charged active sites of the silver nanoparticles through the nitrogen atom of the aromatic ring with a perpendicular orientation

    Improvements to the X-ray Spectrometer at the Aerosol Laboratory, Instituto de Física, UNAM

    Get PDF
    Due to the demands of better (accurate and precise) analytical results using X-ray Fluorescence (XRF) at the Aerosol Laboratory, Instituto de Física, UNAM, it was necessary to carry out improvements in instrumentation and analytical procedures in the x-ray spectrometer located in this facility. A new turbomolecular vacuum system was installed, which allows reaching the working pressure in a shorter time. Characteristic x-rays are registered with a Silicon Drift Detector, or SDD, (8 mm thick Be window, 140 eV at 5.9 keV resolution), working directly in a high-vacuum, permitting the detection of x-rays with energies as low as 1 keV (Na Ka) and higher counting rates than in the past. Due to the interference produced by the Rh L x-rays emitted by the tube normally used for atmospheric and food analysis with Cl K x-rays, another tube with a W anode was mounted in the spectrometer to avoid this interference, with the possibility to select operation with any of these tubes. Examples of applications in atmospheric aerosols and other samples are presented, to demonstrate the enhanced function of the spectrometer. Other future modifications are also explained

    The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols

    Get PDF
    It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols

    The physical parameters, excitation and chemistry of the rim, jets and knots of the planetary nebula NGC 7009

    Get PDF
    We present long-slit optical spectra along the major axis of the planetary nebula NGC 7009. These data allow us to discuss the physical, excitation and chemical properties of all the morphological components of the nebula, including its remarkable systems of knots and jets. The main results of this analysis are the following: i) the electron temperature throughout the nebula is remarkably constant, T_e[OIII] = 10200K; ii) the bright inner rim and inner pair of knots have similar densities of N_e = 6000cm^{-3}, whereas a much lower density of N_e = 1500cm^{-3} is derived for the outer knots as well as for the jets; iii) all the regions (rim, inner knots, jets and outer knots) are mainly radiatively excited; and iv) there are no clear abundance changes across the nebula for He, O, Ne, or S. There is a marginal evidence for an overabundance of nitrogen in the outer knots (ansae), but the inner ones (caps) and the rim have similar N/H values that are at variance with previous results. Our data are compared to the predictions of theoretical models, from which we conclude that the knots at the head of the jets are not matter accumulated during the jet expansion through the circumstellar medium, neither can their origin be explained by the proposed HD or MHD interacting-wind models for the formation of jets/ansae, since the densities as well as the main excitation mechanisms of the knots, disagree with model predictions.Comment: Figure 1 was changed because features were misidentified in the previous version. 17 pages including 5 figures and 3 tables. ApJ in press. Also available at http://www.iac.es/galeria/denise

    Biochemical and structural characterization of a novel arginine kinase from the spider <i>Polybetes pythagoricus</i>

    Get PDF
    Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.Instituto de Investigaciones Bioquímicas de La Plat

    Biochemical and structural characterization of a novel arginine kinase from the spider <i>Polybetes pythagoricus</i>

    Get PDF
    Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.Instituto de Investigaciones Bioquímicas de La Plat

    Bounds on the tau and muon neutrino vector and axial vector charge radius

    Get PDF
    A Majorana neutrino is characterized by just one flavor diagonal electromagnetic form factor: the anapole moment, that in the static limit corresponds to the axial vector charge radius . Experimental information on this quantity is scarce, especially in the case of the tau neutrino. We present a comprehensive analysis of the available data on the single photon production process e+e−−>ννˉγe^+ e^- -> \nu \bar\nu \gamma off Z-resonance, and we discuss the constraints that these measurements can set on for the tau neutrino. We also derive limits for the Dirac case, when the presence of a vector charge radius is allowed. Finally, we comment on additional experimental data on νμ\nu_\mu scattering from the NuTeV, E734, CCFR and CHARM-II collaborations, and estimate the limits implied for and for the muon neutrino.Comment: 20 pages, 2 eps figures. CCFR data included in the analysis. Conclusion unchange

    Heterogeneidad fenotípica en el Sistema de Secreción tipo III de Pseudomonas syringae durante la interacción con la planta

    Get PDF
    La heterogeneidad fenotípica es un fenómeno que se ha descrito en poblaciones bacterianas de diversas especies. Un patrón de expresión génica heterogéneo puede llegar a volverse bimodal en ambientes homogéneos, proceso conocido como bistabilidad. El desarrollo de métodos de análisis de células individuales, como la microscopía confocal, la citometría o la microfluídica, ha llevado a la identificación de nuevos ejemplos de variación fenotípica y de biestabilidad. La relevancia de estos procesos se ha demostrado en patógenos humanos y de animales. No obstante, se conoce muy poco sobre la relevancia de este tipo de procesos en el proceso de adaptación a huéspedes no animales. P. syringae es una bacteria patógena de plantas con un amplio rango de hospedador, existiendo más de 50 patovares. La virulencia de Pseudomonas syringae dependiende del Sistema de Secreción Tipo III (T3SS) y de los efectores tipo III (T3E). Mediante fusiones transcripcionales a proteínas fluorescentes generadas en el genoma de P. syringae pv. phaseolicola, y el uso de microscopía de fluorescencia y citometría de flujo, nuestro laboratorio ha demostrado que la expresión del T3SS y de T3E es heterogénea en el interior de la planta y biestable en medio mínimo. En este trabajo presentamos los resultados obtenidos en nuestro análisis del impacto de la expresión heterogénea del T3SS para la adaptación a la planta, que incluyen la evaluación de la viabilidad de las variantes (T3SSON/T3SSOFF) en el apoplasto de la hoja, y de la dinámica de expresión en la población en diferentes escenarios de activación de defensa en la planta.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore