1,107 research outputs found

    Thin-thick coexistence behavior of 8CB liquid crystalline films on silicon

    Full text link
    The wetting behavior of thin films of 4'-n-octyl-4-cyanobiphenyl (8CB) on Si is investigated via optical and x-ray reflectivity measurement. An experimental phase diagram is obtained showing a broad thick-thin coexistence region spanning the bulk isotropic-to-nematic (TINT_{IN}) and the nematic-to-smectic-A (TNAT_{NA}) temperatures. For Si surfaces with coverages between 47 and 72±372\pm3 nm, reentrant wetting behavior is observed twice as we increase the temperature, with separate coexistence behaviors near TINT_{IN} and TNAT_{NA}. For coverages less than 47 nm, however, the two coexistence behaviors merge into a single coexistence region. The observed thin-thick coexistence near the second-order NA transition is not anticipated by any previous theory or experiment. Nevertheless, the behavior of the thin and thick phases within the coexistence regions is consistent with this being an equilibrium phenomenon.Comment: 4 pages, 3 figure

    SUMO化修飾システムはDNA 損傷部位におけるヒストンバリアントH2A.Z-2 の交換反応を促進する

    Get PDF
    広島大学(Hiroshima University)博士(医学)Doctor of Philosophy in Medical Sciencedoctora

    The antioxidant and oxidant properties of hydropersulfides (RSSH) and polysulfide species.

    Get PDF
    It has become apparent that hydrogen sulfide (H2S), hydropersulfides (RSSH) and other polysulfide species are all intimately linked biochemically. Indeed, at least some of the biological activity attributed to hydrogen sulfide (H2S) may actually be due to its conversion to RSSH and derived polysulfur species (and vice-versa). The unique chemistry associated with the hydropersulfide functional group (-SSH) predicts that it possesses possible protective properties that can help a cell contend with oxidative and/or electrophilic stress. However, since RSSH and polysulfides possess chemical properties akin to disulfides (RSSR), they can also be sources of oxidative/electrophilic stress/signaling as well. Herein are discussed the unique chemistry, possible biochemistry and the physiological implications of RSSH (and polysulfides), especially as it pertains to their putative cellular protection properties against a variety of stresses and/or as possible stressors/signaling agents themselves

    The effects of nitroxyl (HNO) on soluble guanylate cyclase activity: interactions at ferrous heme and cysteine thiols

    Get PDF
    It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme. Like NO, HNO activation appears to occur via interaction with the regulatory ferrous heme on sGC. Somewhat unexpectedly, HNO does not activate the ferric form of the enzyme. Finally, HNO-mediated cysteine thiol modification appears to also affect enzyme activity leading to inhibition. Thus, sGC activity can be regulated by HNO via interactions at both the regulatory heme and cysteine thiols

    平安朝の五節舞姫 : 舞う女たち

    Get PDF
    十世紀から十二世紀にかけて、新嘗祭・大嘗祭に舞った五節舞姫で名前や出自がわかる44人を検討した。十世紀初期は公卿層でも実子を舞姫に献上していたこと、十世紀から十一世紀中頃にかけて現存の受領層女が公卿層の舞姫になっていたこと、殿上五節舞姫は十世紀後半以降も実女の可能性が高い事、十一世紀中期以降は、大嘗祭献上舞姫叙爵が実際に行われた事、十二世紀には公卿献上者の高位の親族や近臣女性が舞姫になっていたこと、等を指摘した

    Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation

    Full text link
    [EN] Lichens are poikilohydrous symbiotic associations between a fungus, photosynthetic partners, and bacteria. They are tolerant to repeated desiccation/rehydration cycles and adapted to anhydrobiosis. Nitric oxide (NO) is a keystone for stress tolerance of lichens; during lichen rehydration, NO limits free radicals and lipid peroxidation but no data on the mechanisms of its synthesis exist. The aim of this work is to characterize the synthesis of NO in the lichen Ramalina farinacea using inhibitors of nitrate reductase (NR) and nitric oxide synthase (NOS), tungstate, and NG-nitro-L-arginine methyl ester (L-NAME), respectively. Tungstate suppressed the NO level in the lichen and caused an increase in malondialdehyde during rehydration in the hyphae of cortex and in phycobionts, suggesting that a plant-like NR is involved in the NO production. Specific activity of NR in R. farinacea was 91 U/mg protein, a level comparable to those in the bryophyte Physcomitrella patens and Arabidopsis thaliana. L-NAME treatment did not suppress the NO level in the lichens. On the other hand, NADPH-diaphorase activity cytochemistry showed a possible presence of a NOS-like activity in the microalgae where it is associated with cytoplasmatic vesicles. These data provide initial evidence that NO synthesis in R. farinacea involves NR.This research was funded by Ministerio de Economia y Competitividad (MINECO - FEDER, Spain) (CGL2016-79158-P) and Generalitat Valenciana (GVA, Excellence in Research, Spain) (PROMETEOIII/2017/039).Expósito, JR.; Martín San Román, S.; Barreno, E.; Reig-Armiñana, J.; García-Breijo, F.; Catalá, M. (2019). Inhibition of NO Biosynthetic Activities during Rehydration of Ramalina farinacea Lichen Thalli Provokes Increases in Lipid Peroxidation. Plants. 8(7):1-15. https://doi.org/10.3390/plants8070189S11587Kranner, I., Beckett, R., Hochman, A., & Nash, T. H. (2008). Desiccation-Tolerance in Lichens: A Review. The Bryologist, 111(4), 576-593. doi:10.1639/0007-2745-111.4.576Kranner, I., Cram, W. J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E., & Pfeifhofer, H. W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proceedings of the National Academy of Sciences, 102(8), 3141-3146. doi:10.1073/pnas.0407716102WILSON, I. D., NEILL, S. J., & HANCOCK, J. T. (2008). Nitric oxide synthesis and signalling in plants. Plant, Cell & Environment, 31(5), 622-631. doi:10.1111/j.1365-3040.2007.01761.xMeilhoc, E., Cam, Y., Skapski, A., & Bruand, C. (2010). The Response to Nitric Oxide of the Nitrogen-Fixing Symbiont Sinorhizobium meliloti. Molecular Plant-Microbe Interactions®, 23(6), 748-759. doi:10.1094/mpmi-23-6-0748Feelisch, M., & Martin, J. F. (1995). The early role of nitric oxide in evolution. Trends in Ecology & Evolution, 10(12), 496-499. doi:10.1016/s0169-5347(00)89206-xMittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. doi:10.1016/s1360-1385(02)02312-9Vranova, E. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53(372), 1227-1236. doi:10.1093/jexbot/53.372.1227Millar, A. H., & Day, D. A. (1996). Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Letters, 398(2-3), 155-158. doi:10.1016/s0014-5793(96)01230-6Caro, A., & Puntarulo, S. (1998). Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiologia Plantarum, 104(3), 357-364. doi:10.1034/j.1399-3054.1998.1040310.xBOVERIS, A. D., GALATRO, A., & PUNTARULO, S. (2000). Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biological Research, 33(2). doi:10.4067/s0716-97602000000200016Wendehenne, D., & Hancock, J. T. (2011). New frontiers in nitric oxide biology in plant. Plant Science, 181(5), 507-508. doi:10.1016/j.plantsci.2011.07.010Gupta, K. J., Fernie, A. R., Kaiser, W. M., & van Dongen, J. T. (2011). On the origins of nitric oxide. Trends in Plant Science, 16(3), 160-168. doi:10.1016/j.tplants.2010.11.007Mallick, N., Mohn, F. H., Soeder, C. J., & Grobbelaar, J. U. (2002). Ameliorative role of nitric oxide on H2O2 toxicity to a chlorophycean alga Scenedesmus obliquus. The Journal of General and Applied Microbiology, 48(1), 1-7. doi:10.2323/jgam.48.1Chen, K., Feng, H., Zhang, M., & Wang, X. (2003). Nitric oxide alleviates oxidative damage in the green algaChlorella pyrenoidosa caused by UV-B radiation. Folia Microbiologica, 48(3), 389-393. doi:10.1007/bf02931372Wilken, M., & Huchzermeyer, B. (1999). Suppression of mycelia formation by NO produced endogenously in Candida tropicalis. European Journal of Cell Biology, 78(3), 209-213. doi:10.1016/s0171-9335(99)80100-9Maier, J., Hecker, R., Rockel, P., & Ninnemann, H. (2001). Role of Nitric Oxide Synthase in the Light-Induced Development of Sporangiophores in Phycomyces blakesleeanus. Plant Physiology, 126(3), 1323-1330. doi:10.1104/pp.126.3.1323Kong, W., Huang, C., Chen, Q., Zou, Y., & Zhang, J. (2012). Nitric oxide alleviates heat stress-induced oxidative damage in Pleurotus eryngii var. tuoliensis. Fungal Genetics and Biology, 49(1), 15-20. doi:10.1016/j.fgb.2011.12.003Song, N.-K., Jeong, C.-S., & Choi, H.-S. (2000). Identification of nitric oxide synthase in Flammulina velutipes. Mycologia, 92(6), 1027-1032. doi:10.1080/00275514.2000.12061247Catalá, M., Gasulla, F., Pradas del Real, A. E., García-Breijo, F., Reig-Armiñana, J., & Barreno, E. (2010). Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiology, 10(1), 297. doi:10.1186/1471-2180-10-297Weissman, L., Garty, J., & Hochman, A. (2005). Rehydration of the Lichen Ramalina lacera Results in Production of Reactive Oxygen Species and Nitric Oxide and a Decrease in Antioxidants. Applied and Environmental Microbiology, 71(4), 2121-2129. doi:10.1128/aem.71.4.2121-2129.2005Catalá, M., Gasulla, F., Pradas del Real, A. E., García-Breijo, F., Reig-Armiñana, J., & Barreno, E. (2013). The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environmental Pollution, 179, 277-284. doi:10.1016/j.envpol.2013.04.015Wendehenne, D., Pugin, A., Klessig, D. F., & Durner, J. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 6(4), 177-183. doi:10.1016/s1360-1385(01)01893-3Bogdan, C. (2001). Nitric oxide and the regulation of gene expression. Trends in Cell Biology, 11(2), 66-75. doi:10.1016/s0962-8924(00)01900-0Yamasaki, H., Sakihama, Y., & Takahashi, S. (1999). An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends in Plant Science, 4(4), 128-129. doi:10.1016/s1360-1385(99)01393-xBerges, J. (1997). Miniview: algal nitrate reductases. European Journal of Phycology, 32(1), 3-8. doi:10.1080/09541449710001719315Chamizo-Ampudia, A., Sanz-Luque, E., Llamas, Á., Ocaña-Calahorro, F., Mariscal, V., Carreras, A., … Fernández, E. (2016). A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production inChlamydomonas. Plant, Cell & Environment, 39(10), 2097-2107. doi:10.1111/pce.12739Corpas, F. J., & Barroso, J. B. (2017). Nitric oxide synthase-like activity in higher plants. Nitric Oxide, 68, 5-6. doi:10.1016/j.niox.2016.10.009Foresi, N., Correa-Aragunde, N., Parisi, G., Caló, G., Salerno, G., & Lamattina, L. (2010). Characterization of a Nitric Oxide Synthase from the Plant Kingdom: NO Generation from the Green Alga Ostreococcus tauri Is Light Irradiance and Growth Phase Dependent    . The Plant Cell, 22(11), 3816-3830. doi:10.1105/tpc.109.073510Moya, P., Molins, A., Martínez-Alberola, F., Muggia, L., & Barreno, E. (2017). Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLOS ONE, 12(4), e0175091. doi:10.1371/journal.pone.0175091Cueto, M., Hernández-Perera, O., Martín, R., Bentura, M. L., Rodrigo, J., Lamas, S., & Golvano, M. P. (1996). Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Letters, 398(2-3), 159-164. doi:10.1016/s0014-5793(96)01232-xChow, F., Capociama, F. V., Faria, R., & Oliveira, M. C. de. (2007). Characterization of nitrate reductase activity in vitro in Gracilaria caudata J. Agardh (Rhodophyta, Gracilariales). Revista Brasileira de Botânica, 30(1). doi:10.1590/s0100-84042007000100012Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00419Xiong, J., Fu, G., Yang, Y., Zhu, C., & Tao, L. (2011). Tungstate: is it really a specific nitrate reductase inhibitor in plant nitric oxide research? Journal of Experimental Botany, 63(1), 33-41. doi:10.1093/jxb/err268Sakihama, Y., Nakamura, S., & Yamasaki, H. (2002). Nitric Oxide Production Mediated by Nitrate Reductase in the Green Alga Chlamydomonas reinhardtii: an Alternative NO Production Pathway in Photosynthetic Organisms. Plant and Cell Physiology, 43(3), 290-297. doi:10.1093/pcp/pcf034Mallick, N., Rai, L. C., Mohn, F. H., & Soeder, C. J. (1999). Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena Doliolum. Chemosphere, 39(10), 1601-1610. doi:10.1016/s0045-6535(99)00058-2Medina-Andrés, R., Solano-Peralta, A., Saucedo-Vázquez, J. P., Napsucialy-Mendivil, S., Pimentel-Cabrera, J. A., Sosa-Torres, M. E., … Lira-Ruan, V. (2015). The Nitric Oxide Production in the Moss Physcomitrella patens Is Mediated by Nitrate Reductase. PLOS ONE, 10(3), e0119400. doi:10.1371/journal.pone.0119400Cánovas, D., Marcos, J. F., Marcos, A. T., & Strauss, J. (2016). Nitric oxide in fungi: is there NO light at the end of the tunnel? Current Genetics, 62(3), 513-518. doi:10.1007/s00294-016-0574-6Slot, J. C., & Hibbett, D. S. (2007). Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study. PLoS ONE, 2(10), e1097. doi:10.1371/journal.pone.0001097Kopincová, J., Púzserová, A., & Bernátová, I. (2012). L-NAME in the cardiovascular system – nitric oxide synthase activator? Pharmacological Reports, 64(3), 511-520. doi:10.1016/s1734-1140(12)70846-0Gross, B. H., Kreutz, K. J., Osterberg, E. C., McConnell, J. R., Handley, M., Wake, C. P., & Yalcin, K. (2012). Constraining recent lead pollution sources in the North Pacific using ice core stable lead isotopes. Journal of Geophysical Research: Atmospheres, 117(D16), n/a-n/a. doi:10.1029/2011jd017270Kim, D., Yamaguchi, K., & Oda, T. (2006). Nitric oxide synthase-like enzyme mediated nitric oxide generation by harmful red tide phytoplankton, Chattonella marina. Journal of Plankton Research, 28(6), 613-620. doi:10.1093/plankt/fbi145Valentovičová, K., Halušková, L., Huttová, J., Mistrík, I., & Tamás, L. (2010). Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. Journal of Plant Physiology, 167(1), 10-14. doi:10.1016/j.jplph.2009.06.018Thomas, T. E., & Harrison, P. J. (1988). A Comparison of In Vitro and In Vivo Nitrate Reductase Assays in Three Intertidal Seaweeds. Botanica Marina, 31(2). doi:10.1515/botm.1988.31.2.101Granbom, M., Chow, F., Lopes, P. F., de Oliveira, M. C., Colepicolo, P., de Paula, E. J., & Pedersén, M. (2004). Characterisation of nitrate reductase in the marine macroalga Kappaphycus alvarezii (Rhodophyta). Aquatic Botany, 78(4), 295-305. doi:10.1016/j.aquabot.2003.11.001Lopes, P. F., Oliveira, M. C., & Colepicolo, P. (1997). DIURNAL FLUCTUATION OF NITRATE REDUCTASE ACTIVITY IN THE MARINE RED ALGA GRACILARIA TENUISTIPITATA (RHODOPHYTA)1. Journal of Phycology, 33(2), 225-231. doi:10.1111/j.0022-3646.1997.00225.xChow, F., de Oliveira, M. C., & Pedersén, M. (2004). In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. Journal of Plant Physiology, 161(7), 769-776. doi:10.1016/j.jplph.2004.01.002Zhao, M.-G., Chen, L., Zhang, L.-L., & Zhang, W.-H. (2009). Nitric Reductase-Dependent Nitric Oxide Production Is Involved in Cold Acclimation and Freezing Tolerance in Arabidopsis. Plant Physiology, 151(2), 755-767. doi:10.1104/pp.109.140996Hwang, S.-P. L., Williams, S. L., & Brinkhuis, B. H. (1987). Changes in Internal Dissolved Nitrogen Pools as Related to Nitrate Uptake and Assimilation in Gracilaria tikvahiae McLachlan (Rhodophyta)). Botanica Marina, 30(1). doi:10.1515/botm.1987.30.1.11Berges, J. A., & Harrison, P. J. (1995). Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: A revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology and Oceanography, 40(1), 82-93. doi:10.4319/lo.1995.40.1.0082Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., & Trakatellis, A. G. (1994). Rapid, Sensitive, and Specific Thiobarbituric Acid Method for Measuring Lipid Peroxidation in Animal Tissue, Food, and Feedstuff Samples. Journal of Agricultural and Food Chemistry, 42(9), 1931-1937. doi:10.1021/jf00045a019Du, Z., & Bramlage, W. J. (1992). Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. Journal of Agricultural and Food Chemistry, 40(9), 1566-1570. doi:10.1021/jf00021a018Reilly, C. A., & Aust, S. D. (1999). Measurement of Lipid Peroxidation. Current Protocols in Toxicology, 00(1). doi:10.1002/0471140856.tx0204s00Nussler, A. K., Glanemann, M., Schirmeier, A., Liu, L., & Nüssler, N. C. (2006). Fluorometric measurement of nitrite/nitrate by 2,3-diaminonaphthalene. Nature Protocols, 1(5), 2223-2226. doi:10.1038/nprot.2006.341Hope, B. T., & Vincent, S. R. (1989). Histochemical characterization of neuronal NADPH-diaphorase. Journal of Histochemistry & Cytochemistry, 37(5), 653-661. doi:10.1177/37.5.2703701Hope, B. T., Michael, G. J., Knigge, K. M., & Vincent, S. R. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proceedings of the National Academy of Sciences, 88(7), 2811-2814. doi:10.1073/pnas.88.7.2811Griess, P. (1879). Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt „Ueber einige Azoverbindungen”. Berichte der deutschen chemischen Gesellschaft, 12(1), 426-428. doi:10.1002/cber.187901201117Chaki, M., Valderrama, R., Fernández-Ocaña, A. M., Carreras, A., Gómez-Rodríguez, M. V., Pedrajas, J. R., … Barroso, J. B. (2010). Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 62(6), 1803-1813. doi:10.1093/jxb/erq358Noble, J. E., & Bailey, M. J. A. (2009). Chapter 8 Quantitation of Protein. Guide to Protein Purification, 2nd Edition, 73-95. doi:10.1016/s0076-6879(09)63008-
    corecore