34 research outputs found

    Comparative study of paediatric prescription drug utilization between the spanish and immigrant population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immigrant population has increased greatly in Spain in recent years to the point where immigrants made up 12% of the infant population in 2008. There is little information available on the profile of this group with regard to prescription drug utilization in universal public health care systems such as that operating in Spain. This work studies the overall and specific differences in prescription drug utilization between the immigrant and Spanish population.</p> <p>Methods</p> <p>Use was made of the Aragonese Health Service databases for 2006. The studied population comprises 159,908 children aged 0-14 years, 13.6% of whom are foreign nationals. Different utilization variables were calculated for each group. Prescription-drug consumption is measured in Defined Daily Doses (DDD) and DDD/1000 persons/day/(DID).</p> <p>Results</p> <p>A total of 833,223 prescriptions were studied. Utilization is lower for immigrant children than in Spanish children for both DID (66.27 v. 113.67) and average annual expense (€21.55 v. €41.14). Immigrant children consume fewer prescription drugs than Spanish children in all of the therapy groups, with the most prescribed (in DID) being: respiratory system, anti-infectives for systemic use, nervous system, sensory organs. Significant differences were observed in relation to the type of drugs and the geographical background of immigrants.</p> <p>Conclusion</p> <p>Prescription drug utilization is much greater in Spanish children than in immigrant children, particularly with reference to bronchodilators (montelukast and terbutaline) and attention-disorder hyperactivity drugs such as methylphenidate. There are important differences regarding drug type and depending on immigrants' geographical backgrounds that suggest there are social, cultural and access factors underlying these disparities.</p

    Biomimetic self-assembling copolymer-hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate

    Get PDF
    Citrate binds strongly to the surface of calcium phosphate (apatite) nanocrystals in bone and is thought to prevent crystal thickening. In this work, citrate added as a regulatory element enabled molecular control of the size and stability of hydroxyapatite (HAp) nanocrystals in synthetic nanocomposites, fabricated with self-assembling block copolymer templates. The decrease of the HAp crystal size within the polymer matrix with increasing citrate concentration was documented by solid-state nuclear magnetic resonance (NMR) techniques and wide-angle X-ray diffraction (XRD), while the shapes of HAp nanocrystals were determined by transmission electron microscopy (TEM). Advanced NMR techniques were used to characterize the interfacial species and reveal enhanced interactions between mineral and organic matrix, concomitant with the size effects. The surface-to-volume ratios determined by NMR spectroscopy and long-range 31P{1H} dipolar dephasing show that 2, 10, and 40 mM citrate changes the thicknesses of the HAp crystals from 4 nm without citrate to 2.9, 2.8, and 2.3 nm, respectively. With citrate concentrations comparable to those in body fluids, HAp nanocrystals of sizes and morphologies similar to those in avian and bovine bones have been produced

    Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review

    Get PDF
    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fi llers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specifi c degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fi bers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specifi c biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.  The research leading to this work has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2 - NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)

    Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling

    No full text
    In degenerative diseases or lesions, bone tissue replacement and regeneration are important clinical goals. The most used bone substitutes today are hydroxyapatite (HA) scaffolds. These scaffolds, developed over the last few decades, present high porosity and good osteointegration, but haven't completely solved issues related to bone defects. Moreover, the exact intracellular mechanisms involved in the response to HA have yet to be addressed. This prompted us to investigate the protein networks responsible for signal transduction during early osteoblast adhesion on synthetic HA scaffolds. By performing a global kinase activity assay, we showed that there is a specific molecular machinery responding to HA contact, immediately triggering pathways leading to cytoskeleton rearrangement due to activation of Adducin 1 (ADD1), protein kinase A (PKA), protein kinase C (PKC), and vascular endothelial growth factor (VEGF). Moreover, we found a significantly increased phosphorylation of the activating site Ser-421 in histone deacetylase 1 (HDAC1), a substrate of Cyclin-Dependent Kinase 5 (CDK5). These phosphorylation events are hallmarks of osteoblast differentiation, pointing to HA surfaces ability to promote differentiation. We also found that AKT was kept active, suggesting the maintenance of survival pathways. Interestingly, though, the substrate sequence of CDK5 also presented higher phosphorylation levels when compared to control conditions. To our knowledge, this kinase has never before been related to osteoblast biology, opening a new avenue of investigation for novel pathways involved in this matter. These results suggest that HA triggers a specific intracellular signal transduction cascade during early osteoblast adhesion, activating proteins involved with cytoskeleton rearrangement, and induction of osteoblast differentiation. (c) 2014 Wiley Periodicals, Inc.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore