106 research outputs found
Decadal-scale periodicities in the stratosphere associated with the solar cycle and the QBO
An interactive two-dimensional model is used to analyze the response of the stratosphere to the 11-year solar cycle in the presence of a quasi-biennial oscillation (QBO). The purpose of the paper is to demonstrate how the solar cycle response of stratospheric ozone and temperature diagnosed from model simulations depends on the QBO. The analyses show that (1) the simulated response to the solar flux when no QBO is imposed is very similar in different periods, despite differences in the magnitude and variability of the solar forcing; (2) the apparent solar response of temperature and ozone is modified by the presence of an imposed QBO; and (3) the impact of the QBO on the derived solar response is greatly reduced when the observed QBO forcing is replaced by an idealized sinusoidal forcing. The impact of the QBO on the solar cycle analysis is larger when only two solar cycles are analyzed but is not negligible even for analysis of four solar cycles. Differences in the QBO contribution account for most of the differences in analyses of separate 22-year periods. The statistical significance is not always a reliable indicator that the QBO effect has been separated
The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal
We present results from three multidecadal sensitivity experiments with time-varying solar cycle and quasi-biennial oscillation (QBO) forcings using National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM3.1). The model experiments are unique compared to earlier studies as they use time-varying forcings for the solar cycle only and the QBO, both individually and combined. The results show that the annual mean solar response in the tropical upper stratosphere is independent of the presence of the QBO. The response in the middle to lower stratosphere differs depending on the presence of the QBO and the solar cycle but is statistically indistinguishable in the three experiments. The seasonal evolution of the solar and the combined solar-QBO signals reveals a reasonable agreement with observations only for the experiment in which both the solar cycle and the QBO forcing are present, suggesting that both forcings are important to generate the observed response. More stratospheric warmings occur during solar maximum and QBO west conditions. This appears to be the result of a QBO modulation of the background zonal mean wind climatology, which modifies the solar signal. Depending on the background wind, the small initial early winter solar signal in the subtropical upper stratosphere/lower mesosphere is enhanced during QBO east and diminished during QBO west conditions. This consequently influences the transfer of the solar-QBO signal during winter and results in the observed differences during late winte
Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria
Background: We determined the effects of two antibiotic policies (predominance of either β-lactam antibiotics or fluroquinolones) on acquisition with third-generation cephalosporin-resistant Enterobacteriaceae (CRE) and fluoroquinolone-resistant CRE (FCRE) in two ICUs, with monitoring of other variables that may influence acquisition. Methods: After an 8-month baseline period, units were randomized to a predominant β-lactam antibiotic regimen (weekly cycling of ceftriaxone, amoxicillin-clavulanic acid and fluroquinolones) or a fluoroquinolone regimen for 3 months, with cross-over for another 3 months. Acquisition of CRE and FCRE was determined by microbiological surveillance. Results: During baseline, acquisition rates for CRE and FCRE were 14/1,000 and 2/1,000 patient days at risk, respectively. Cross-transmission of CRE accounted for ≤25% of acquisitions, and CRE acquisition was associated with the use of β-lactam antibiotics (amoxicillin-clavulanic acid in particular). As compared to baseline, β-lactam antibiotic use [in defined daily dose (DDD)/1,000 patient days] was reduced from 854 to 526 (-39%) and 555 (-35%) during both intervention periods. Fluoroquinolone use was increased from 150 and 129 DDD/1,000 patient days in baseline and the β-lactam period to 514 DDD/1,000 patient days (+243%) in the fluoroquinolone period. Reductions in β-lactam use were not associated with reduced CRE acquisition [adjusted HRs were 1.0 (95% CR: 0.5-2.2) and 1.1 (95% CI: 0.5-2.5) during both periods, respectively]. Increased use of fluoroquinolones was associated with increased acquisition of FCRE [adjusted HR 4.1 (95% CI: 1.4-11.9; p < 0.01]. Infection control variables remained comparable during all periods. Conclusion: A 35-39% reduction of β-lactam exposure was not associated with reduced acquisition of CRE, whereas a 243% increase of fluoroquinolone use increased acquisition of FCRE
Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique
BACKGROUND: One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface. METHODS: This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiO(x )to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation. RESULTS: It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05). CONCLUSION: Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health
Sensitivity of the Northern Hemisphere blocking frequency to the detection index
This work has been supported in part by the European Commission in the framework of the Environment and Climate Research Programme (MERCURE, ENV4-CT97-0485 for FJDR) and by the Spanish CICYT CLI97-0558 grant
Investigation of relative risk estimates from studies of the same population with contrasting response rates and designs
Background: There is little empirical evidence regarding the generalisability of relative risk estimates from studies which have relatively low response rates or are of limited representativeness. The aim of this study was to investigate variation in exposure-outcome relationships in studies of the same population with different response rates and designs by comparing estimates from the 45 and Up Study, a population-based cohort study (self-administered postal questionnaire, response rate 18%), and the New South Wales Population Health Survey (PHS) (computer-assisted telephone interview, response rate ~60%).
Methods: Logistic regression analysis of questionnaire data from 45 and Up Study participants (n = 101,812) and 2006/ 2007 PHS participants (n = 14,796) was used to calculate prevalence estimates and odds ratios (ORs) for comparable variables, adjusting for age, sex and remoteness. ORs were compared using Wald tests modelling each study separately, with and without sampling weights.
Results: Prevalence of some outcomes (smoking, private health insurance, diabetes, hypertension, asthma) varied between the two studies. For highly comparable questionnaire items, exposure-outcome relationship patterns were almost identical between the studies and ORs for eight of the ten relationships examined did not differ significantly. For questionnaire items that were only moderately comparable, the nature of the observed relationships did not differ materially between the two studies, although many ORs differed significantly.
Conclusions: These findings show that for a broad range of risk factors, two studies of the same population with varying response rate, sampling frame and mode of questionnaire administration yielded consistent estimates of exposure-outcome relationships. However, ORs varied between the studies where they did not use identical questionnaire items
Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing
The NCAR Whole Atmosphere Community Climate Model, version 3 (WACCM3), is used to study the atmospheric response from the surface to the lower thermosphere to changes in solar and geomagnetic forcing over the 11-year solar cycle. WACCM3 is a general circulation model that incorporates interactive chemistry that solves for both neutral and ion species. Energy inputs include solar radiation and energetic particles, which vary significantly over the solar cycle. This paper presents a comparison of simulations for solar cycle maximum and solar cycle minimum conditions. Changes in composition and dynamical variables are clearly seen in the middle and upper atmosphere, and these in turn affect terms in the energy budget. Generally good agreement is found between the model response and that derived from satellite observations, although significant differences remain. A small but statistically significant response is predicted in tropospheric winds and temperatures which is consistent with signals observed in reanalysis data sets
The Oslo Health Study: The impact of self-selection in a large, population-based survey
BACKGROUND: Research on health equity which mainly utilises population-based surveys, may be hampered by serious selection bias due to a considerable number of invitees declining to participate. Sufficient information from all the non-responders is rarely available to quantify this bias. Predictors of attendance, magnitude and direction of non-response bias in prevalence estimates and association measures, are investigated based on information from all 40 888 invitees to the Oslo Health Study. METHODS: The analyses were based on linkage between public registers in Statistics Norway and the Oslo Health Study, a population-based survey conducted in 2000/2001 inviting all citizens aged 30, 40, 45, 59–60 and 75–76 years. Attendance was 46%. Weighted analyses, logistic regression and sensitivity analyses are performed to evaluate possible selection bias. RESULTS: The response rate was positively associated with age, educational attendance, total income, female gender, married, born in a Western county, living in the outer city residential regions and not receiving disability benefit. However, self-rated health, smoking, BMI and mental health (HCSL) in the attendees differed only slightly from estimated prevalence values in the target population when weighted by the inverse of the probability of attendance. Observed values differed only moderately provided that the non-attending individuals differed from those attending by no more than 50%. Even though persons receiving disability benefit had lower attendance, the associations between disability and education, residential region and marital status were found to be unbiased. The association between country of birth and disability benefit was somewhat more evident among attendees. CONCLUSIONS: Self-selection according to sociodemographic variables had little impact on prevalence estimates. As indicated by disability benefit, unhealthy persons attended to a lesser degree than healthy individuals, but social inequality in health by different sociodemographic variables seemed unbiased. If anything we would expect an overestimation of the odds ratio of chronic disease among persons born in non-western countries
Measuring the predictability of life outcomes with a scientific mass collaboration.
How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences
Direct and indirect effects of solar variations on stratospheric ozone and temperature
We have used a fully coupled chemistry-climate model (WACCM) to investigate the relative importance of the direct and indirect effects of 11a solar variations on stratospheric temperature and ozone. Although the model does not contain a quasi-biennial oscillation (QBO) and uses fixed sea surface temperature (SST), it is able to produce a second maximum solar response in tropical lower stratospheric (TLS) temperature and ozone of approximately 0.5 K and 3%, respectively. In the TLS, the solar spectral variations in the chemistry scheme play a more important role than solar spectral variations in the radiation scheme in generating temperature and ozone responses. The chemistry effect of solar variations causes significant changes in the Brewer-Dobson (BD) circulation resulting in ozone anomalies in the TLS. The model simulations also show a negative feedback in the upper stratosphere between the temperature and ozone responses. A wavelet analysis of the modeled ozone and temperature time series reveals that the maximum solar responses in ozone and temperature caused by both chemical and radiative effects occur at different altitudes in the upper stratosphere. The analysis also confirms that both the direct radiative and indirect ozone feedback effects are important in generating a solar response in the upper stratospheric temperatures, although the solar spectral variations in the chemistry scheme give the largest solar cycle power in the upper stratospheric temperature
- …