225 research outputs found

    Editors’ Note

    Get PDF

    Editorial Board

    Get PDF

    The Ursinus Weekly, July 1, 1946

    Get PDF
    Board announces faculty revisals; new plans adopted • Baccalaureate degrees received by eighty-nine students as Ursinus observes seventy-sixth annual commencement • Prizes awarded to honor grads for scholarship, citizenship • Rev. Maurice Hohlfeld addresses conference of mission\u27s group • Dorms elect officers, senators for next term • Tau Kappa Alpha initiates five • Men elect Ross council prexy; name seven others as members • Rev. Billman, D. D., delivers address to senior class Sunday • T. Gresh, Williams take honors as valedictorian, salutatorian • P. Willauer named alumni president • Rosicrucians entertain fifty-two girls at tea • Women\u27s Club gives $400 • Graduates obtain positions through Placement Bureau • Y announces results of drives • Virginia Dulin and Erma Keyes receive medals as outstanding junior athletes • WAA presents certificates, awards to members of varsity, jayvee teams • Bears drop 2-1 game to Lancaster batsmen despite errorless ball • Marauders down softball queens • Mules are victors over Ursinus nine • Curtain Club members re-elect Jane Estabrook as president • YM-YWCA install officers, cabinethttps://digitalcommons.ursinus.edu/weekly/1683/thumbnail.jp

    CCD Readout Electronics for the Subaru Prime Focus Spectrograph

    Full text link
    We present details of the design for the CCD readout electronics for the Subaru Telescope Prime Focus Spectrograph (PFS). The spectrograph is comprised of four identical spectrograph modules, each collecting roughly 600 spectra. The spectrograph modules provide simultaneous wavelength coverage over the entire band from 380 nm to 1260 nm through the use of three separate optical channels: blue, red, and near infrared (NIR). A camera in each channel images the multi-object spectra onto a 4k x 4k, 15 um pixel, detector format. The two visible cameras use a pair of Hamamatsu 2k x 4k CCDs with readout provided by custom electronics, while the NIR camera uses a single Teledyne HgCdTe 4k x 4k detector and ASIC Sidecar to read the device. The CCD readout system is a custom design comprised of three electrical subsystems: the Back End Electronics (BEE), the Front End Electronics (FEE), and a Pre-amplifier. The BEE is an off-the-shelf PC104 computer, with an auxiliary Xilinx FPGA module. The computer serves as the main interface to the Subaru messaging hub and controls other peripheral devices associated with the camera, while the FPGA is used to generate the necessary clocks and transfer image data from the CCDs. The FEE board sets clock biases, substrate bias, and CDS offsets. It also monitors bias voltages, offset voltages, power rail voltage, substrate voltage and CCD temperature. The board translates LVDS clock signals to biased clocks and returns digitized analog data via LVDS. Monitoring and control messages are sent from the BEE to the FEE using a standard serial interface. The Pre-amplifier board resides behind the detectors and acts as an interface to the two Hamamatsu CCDs. The Pre-amplifier passes clocks and biases to the CCDs, and analog CCD data is buffered and amplified prior to being returned to the FEE.Comment: 14 pages, 15 figures, SPIE ATI 2014, Montrea

    Evaluation of residue management practices on barley residue decomposition

    Get PDF
    Optimizing barley (hordeum vulgare L.) production in Idaho and other parts of the Pacific Northwest (PNW) should focus on farm resource management. The effect of post-harvest residue management on barley residue decomposition has not been adequately studied. Thus, the objective of this study was to determine the effect of residue placement (surface vs. incorporated), residue size (chopped vs. ground-sieved) and soil type (sand and sandy loam) on barley residue decomposition. A 3-mo laboratory incubation experiment was conducted at a temperature of 25 to 30 °C at the Aberdeen Research and Extension Center, Aberdeen, Idaho, USA. Following the study, a Markov-Chain Monte Carlo (MCMC) modeling approach was applied to investigate the first-order decay kinetics of barley residue. An accelerated initial flush of C-mineralization was measured for the sieved (Day 1) compared to chopped (Day 3 to 5) residues for both surface incorporated applications. The highest evolution of CO2-C of 8.3 g kg-1 was observed on Day 1 from the incorporated-sieved application for both soils. The highest and lowest amount of cumulative CO2-C released and percentage residue decomposed over 50-d was observed for surface-chopped (107 g kg-1 and 27%, respectively) and incorporated-sieved (69 g kg-1 and 18%, respectively) residues, respectively. There were no significant differences in C-mineralization from barley residue based on soil type or its interactions (p >0.05). The largest decay constant k of 0.0083 d-1 was calculated for surface-chopped residue where the predicted half-life was 80 d, which did not differ from surface sieved or incorporated chopped. In contrast, incorporated-sieved treatments only resulted in a k of 0.0054 d-1 and would need an additional 48 d to decompose 50% of the residue. Future residue decomposition studies under field conditions are warranted to verify the residue C-mineralization and its impact on residue management

    Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

    Get PDF
    Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r = -0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r = -0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
    corecore