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Abstract

Optimizing barley (hordeum vulgare L.) production in Idaho and other parts of the Pacific

Northwest (PNW) should focus on farm resource management. The effect of post-harvest

residue management on barley residue decomposition has not been adequately studied.

Thus, the objective of this study was to determine the effect of residue placement (surface

vs. incorporated), residue size (chopped vs. ground-sieved) and soil type (sand and

sandy loam) on barley residue decomposition. A 50-day(d) laboratory incubation experi-

ment was conducted at a temperature of 25˚C at the Aberdeen Research and Extension

Center, Aberdeen, Idaho, USA. Following the study, a Markov-Chain Monte Carlo

(MCMC) modeling approach was applied to investigate the first-order decay kinetics of

barley residue. An accelerated initial flush of residue carbon(C)-mineralization was mea-

sured for the sieved (Day 1) compared to chopped (Day 3 to 5) residues for both surface

incorporated applications. The highest evolution of carbon dioxide (CO2)-C of 8.3 g kg-1

dry residue was observed on Day 1 from the incorporated-sieved application for both

soils. The highest and lowest amount of cumulative CO2-C released and percentage resi-

due decomposed over 50-d was observed for surface-chopped (107 g kg-1 dry residue

and 27%, respectively) and incorporated-sieved (69 g kg-1 dry residue and 18%, respec-

tively) residues, respectively. There were no significant differences in C-mineralization

from barley residue based on soil type or its interactions with residue placement and size

(p >0.05). The largest decay constant k of 0.0083 d-1 was calculated for surface-chopped

residue where the predicted half-life was 80 d, which did not differ from surface sieved or

incorporated chopped. In contrast, incorporated-sieved treatments only resulted in a k of

0.0054 d-1 and would need an additional 48 d to decompose 50% of the residue. Future

residue decomposition studies under field conditions are warranted to verify the residue

C-mineralization and its impact on residue management.
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Introduction

Barley (hordeum vulgare L.) is an important cereal crop grown worldwide with a production of

142 million metric ton (MMT) in 2018–2019 crop year [1] with a total production of 3.09

MMT covering nearly 790,000 hectares in the USA [2]. Idaho represents one-third of total US

barley production which accounted for ~1.1 MMT of barley production annually over 200,000

hectares [3]. Globally, fifty-nine countries import US barley largely for use in the beer industry

[4]. Common practices of barley production involve harvesting of barley grains and after-

wards, barley residue either remains in the field or is bailed and removed. Remaining residue

in the field is an important source of soil organic carbon (SOC) [5]. In semi-arid regions of the

Pacific Northwest (PNW) and western United States (for example, Idaho), soils are susceptible

to soil organic matter (SOM) loss, thus, SOC levels may be low [6]. In addition to building

SOC, residues reduce soil erosion, retain and recycle plant nutrients in the soil, and provide

required energy for soil microbial processes [5,7–10].

Carbon to nitrogen (C:N) ratio is a contributing factor in determining the residue decom-

position as affected by existing soil microbial communities. Sustainable nutrient management

for barley production in Idaho and other parts of PNW are based on the knowledge of how

residues affect the cycling of C and N, and the availability of crop nutrients in the soil. Critical

factors in barley residue breakdown include soil type, tillage management, and management of

the post-harvest barley residue. Barley residue can vary in its C: N ratio (54 to 80:1) depending

on the growing condition and location [11]. Further, tillage operations in Idaho and other

PNW regions vary widely from no-tillage, direct-seed operations to intensive conventional till-

age operations that can subsequently affect residue breakdown. Conventional tillage incorpo-

rates residues, surface soil is turned over into the sub-surface soil [12] and the rhizosphere

becomes more stable for residue breakdown [13,14]. Incorporation of crop residues in a wheat

(triticum aestivum L.) field in Oregon (~PNW) over a 26-month field study showed that the

net mineralization was typically greater when residues were plowed into the soil (total 85%)

than when residue was left on the soil surface (25% and 31%, respectively) [15] over the course

of experiment, and provided greater nutrients for subsequent crops. However, the opposite

trend of increased breakdown of corn (zea mays L.) residue occurred when residues remained

on the surface of the soils (~no tillage) compared to incorporated in recent studies in Iowa

[10,16]. The method of residue placement (surface vs. incorporated) and consequently, the

contact between the soil and the residue have had conflicting results indicating the effects of

other confounding factors (i.e. residue properties, native microbial communities) on the resi-

due breakdown rate in previous research. Residue particle size of barley residue in the field as

part of management practices could aid either faster or slower breakdown by various mecha-

nisms [14]. In general, finer sized residue would allow more surface area for microbial activi-

ties and nutrient and/or water retention in the surface of the soil to facilitate residue

breakdown [5,10]. In contrast, the application of residues in coarser chopped conditions

would result in reduced surface contact between the soil and barley straw which has been

claim to slow down the rate of residue breakdown by microbial decomposers [17]. Thus,

smaller sized residues may favor C-mineralization and residue breakdown in barley by either

increased microbial activities particularly by increasing soil temperature [15] or by filling the

soil pore-space in higher magnitude which facilitate decomposition [5]. Alternately, an

increased C-mineralization (~8% more) from small-grain residues with the application of

coarser-sized residue as compared to fine-sized residue during a 65-d laboratory incubation

study at 25˚C were also reported [11].

Residue breakdown is also affected by soil type and associated soil properties (for example,

organo-mineral interactions) specific to a region as well as interactions that occur in the
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rhizosphere among the plant, soil microbial organisms, and soil flora and fauna [18]. Barley

residue decomposition was affected by soil texture, for example reduced breakdown with a

greater adsorption of organic N and C (stronger organo-mineral bonding) in clay soils [18] vs.

greater breakdown with a reduced rate of SOM decomposition in highly aerated sandy loam

soils [13,19]. Soil type has been reported to have a more prominent effect on the rate of decom-

position than the residue N content [13]. Recently, no differences in decomposition rate of

corn residues over an extended period of time were observed in a silty-clay loam soil in Iowa

after addition of N to the soil [5]. Other associated soil properties such as soil moisture in addi-

tion to soil type significantly influences the breakdown of the residue [13].

The effects of various factors in the process of barley residue decomposition as mentioned

above showed mixed results based on the literature available. Additionally, the effect of post-

harvest management practices of barley residues in irrigated production systems on C-miner-

alization needs to be quantified and understood to ensure sustainable barley production.

Achieving sustainable barley production through understanding the dynamics of residue car-

bon breakdown and residue CO2-C loss for subsequent crop production is the focus of this

study. Our objectives were (i) to determine the effect of residue placement (surface vs. incorpo-

rated), residue size (chopped vs. sieved-ground) and soil type (sand and sandy loam) on barley

residue decomposition rate, (ii) to quantify the barley residue decomposition with a modeling

approach to guide proper resource management for barley and cereal production.

Materials and methods

Site description

Two soil samples (with four field replicates) were collected from a common soil series (Declo

Loam; Coarse-loamy, mixed, superactive, mesic Xeric Haplocalcids) in southeastern Idaho

[20,21] (Table 1). While both the soil samples were from the same soil series they differed in

textural class (sand versus sandy loam) [21]. Before soil sample collection, the lands were culti-

vated with barley (Hordeum vulgare, L.). The average soil organic carbon content measured

by loss on ignition (LOI) in the study region was 2 g kg-1 [22]. Within a sampling location, an

approximately 0.1 ha area was sampled by collecting and compositing 20 sub-samples using a

7.6-cm bucket auger from depths of 0- to 15- cm. Tillage operations can be highly varied in

Idaho and other western States. The depth of 0–15 cm is an approximation for shallow tillage

operations that are conducted using disc plows [5]. Collected soil samples were dried in a

forced-convection oven at 40˚C, and subsequently crushed and passed through a 2-mm sieve.

Table 1. Basic properties of soil used in the laboratory incubation study conducted at the Aberdeen Research and

Extension Center, Aberdeen, ID, USA.

Properties Sand Sandy Loam

Sand (g kg-1) 898 (±4.9)† 661 (±5.6)

Silt (g kg-1) 57 (±15.1) 239 (±5.6)

Clay (g kg-1) 45 (±11.0) 100 (±0.02)

pH 8.1 (±0.01) 8.4 (±0.02)

EC (μS cm-1) 102 (±3.04) 148 (±5.9)

SOM (g kg-1) 9 (±0.6) 15 (±0.6)

Total N (g kg-1) 0.46 (±0.01) 0.69 (±0.02)

†values in the parenthesis indicate standard errors.

EC; electrical conductivity, SOM; soil organic matter; N; Nitrogen.

https://doi.org/10.1371/journal.pone.0232896.t001

PLOS ONE Barley residue management and residue decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0232896 May 13, 2020 3 / 16

https://doi.org/10.1371/journal.pone.0232896.t001
https://doi.org/10.1371/journal.pone.0232896


Soil description

Soil particle size analysis was performed using the hydrometer method (Table 1) [23]. Soil pH

and electrical conductivity (EC) were determined potentiometrically using a 1:1 soil to deion-

ized water ratio [23] using a soil pH meter (Orion StarAM A215 pH/Conductivity Benchtop

Multiparameter meter, Thermo Fisher Scientific Inc., Waltham, MA, USA). The loss on igni-

tion (LOI) analysis was conducted on samples where 10 g of the sample was dried at 105 ˚C for

2 h and placed in a desiccator for 1 h. Samples were then combusted in a muffle furnace at 360

˚C for 2 h, dried for 1 h at 105 ˚C and equilibrated in a desiccator for 1 h. The SOM content

was determined by LOI based on the difference in initial and final weights [23,24]. Total nitro-

gen (TN) was measured by high-temperature combustion using a VarioMax CN analyzer (Ele-

mentar Americas, Inc. Mt Laurel, NJ).

Residue description

The residue used in the experiment was obtained from a common malt barley cultivar (Har-

rington) which is grown for malt production in the study region [25]. Residues were collected

in 2017 after harvest of a barley crop grown under standard production practices at the Aber-

deen Research and Extension Center, Aberdeen, ID [26]. An estimated dry matter production

for barley excluding grain (~8000 kg ha-1) was chosen as the rate of residue added for the study

[27]. The residue was characterized for cellulose, hemicellulose, lignin and ash content. The

cellulose–Acid Detergent Fiber (ADF; ash-free) content were determined using the method of

‘Fiber (Acid Detergent) and Lignin in Animal Feed: Section: 973.18’ [28] with a modification

of using Whatman 934-AH glass micro-fiber filters with a capacity of 1.5μm particle retention

instead of using the fritted glass crucible. The hemicellulose-Neutral Detergent Fiber (NDF;

ash-free) content was determined using the method described by [29]. Lignin, a critical factor

influencing digestibility of the plant cell wall, was analyzed by the method outlined by [30].

Followed by fiber (ADF and NDF) and lignin analyses, the ash content in the residue samples

were analyzed using the methods detailed in the ‘Ash of Animal Feed; section: 942.05’ [28].

Laboratory incubation experimental approach

A 50-d laboratory incubation experiment was conducted at a constant temperature (25˚C) and

moisture (60% water-filled pore space). Although we did not mimic the field condition, the

experimental set-up we used allowed us to compare our findings with other microcosm studies

focused on residue decomposition [5,31]. The experiment was arranged as a randomized com-

plete block (RCB) design with two types of residue placement (surface vs. incorporated), two

residue sizes (chopped vs. sieved), and two soil textures (sand vs. sandy loam) with four repli-

cates for each. Barley residue (4.1 g) and soil (100 g) were placed in a Mason jar. A 500 mL

capacity wide-mouth mason jars with an 86 mm dome lid modified to support a 60-mm petri

dish [32] were used in this study. The inner diameter width 76 cm, outer diameter width of 82

cm, and height of 113cm. (The inner diameter width 76 cm, outer diameter width of 82 cm,

and height of 113cm). Surface applied residue was evenly spread on the surface of the soil and

incorporated residue was thoroughly mixed into the soils. Residue size included chopped

(~7-cm) and sieved (ground to pass a 2-mm sieve) treatments.

The study was conducted based on incubation methods described by [5]. A 60 mm Petri-

dish containing 5 mL of 1 M NaOH solution was placed in each Mason jar to capture CO2

evolved from the soil-residue mixture during the incubation. The amount of CO2 evolved

from residue decomposition trapped in NaOH solution at specific time intervals was deter-

mined by titration immediately by adding 5 mL of 2 M barium chloride (BaCl2) solution and 2

to 3 drops of phenolphthalein indicator to each petri-dish and pH endpoint titrating with 1 M
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HCl solution using a digital auto-titrator (848 Titrino Plus, Metrohm Lts., Herisau, Switzer-

land) until the pH endpoint was reached. A new petri dish with 1 M NaOH was used at each

time interval after taking the previous petri-dish from individual mason jars. Three mason jars

containing only soil of each type without any residue added were used as a control to monitor

CO2 release from the soil. Additionally, three empty Mason jars without any soil or residue

were included as an experimental control (control Mason jars) which were used to calculate

the total CO2-C evolved from each treatment in the headspace (See the calculation section in

supporting information).

Mason jars were weighed initially with the soil-residue mixtures and each Mason jar was

weighed each time the petri-dish was changed for taking the reading. Additionally, the amount

of CO2 evolved from each jar via absorption by sodium hydroxide (NaOH) in the petri-dish

was taken into account for weight reduction in each jar. To maintain the constant soil mois-

ture, the overall reduction in the weight of the Mason jar was compensated by sprinkling the

exact amount of deionized water in each jar during the entire experiment.

Calculations

First-order decay constant and decay time. Once the endpoint in titration was achieved, the

amount of CO2 retained in each petri-dish was determined by using the formula described by

[33]. The initial rate of residue decomposition or decay constant (k) was calculated using a

simple first-order decay function (Eq 1, see [34] for more details) within a Bayesian Markov

Chain Monte Carlo (MCMC) framework (Eq 1).

Ct ¼ C0ð1 � e� ktÞ ð1Þ

Where,

Ct = C content at time t (day)

C0 = initial C content (mg)

k = first-order rate constant (day-1)

t = time (day)

The joint probability distribution of the Bayesian MCMC model used is as follows (Eq 2):

½C0;k; s2
pjCt� / Pn

i¼1
gammaðCtij

ðC0 � ð1 � e� ktiÞÞ2

s2
p

;
ðC0 � ð1 � e� ktiÞÞ

s2
p

Þ � betaðkja; βÞ�

gammaðC0ja; βÞ � gammaðspja; βÞ
ð2Þ

Where, C0, Ct, and σp (aka process model uncertainty) followed uninformed gamma prior dis-

tributions and k followed an uninformed beta prior distribution.

We implemented the MCMC method using the rjags package in R (version 3.4.3). Posterior

distributions of k were estimated with 10,000 model iterations after discarding the first 5000

runs. Model convergence was diagnosed with the Gelman–Rubin diagnostics [35] and model

suitability were determined with a Bayesian p value.
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Using decay constant (k) values, time required for 50, 75, and 99% residue C-mineralization

from barley residue was estimated (Eqs 3, 4 & 5) as follows:

t0:50 ¼ lnð2=kÞ ð3Þ

t0:75 ¼ lnð4=kÞ ð4Þ

t0:99 ¼ lnð100=kÞ ð5Þ

Calculations of CO2-C decomposed

Once the endpoint in titration was achieved, the amount of CO2 retained in each petri-dish

was determined by using the following formula (33; Eq 6).

CO2 ¼ ðX � YÞ �N�W ð6Þ

Where,

X = volume of acid needed to titrate the petri-dish solution from the Mason jars with soil

sample only to the end point i.e. ‘blank’, (mL)

Y = volume of the acid needed to titrate the petri-dish solution from the Mason jars with

soil-residue sample to the end point i.e. ‘blank’, (mL)

N = normality of the acid, (mL-1)

W = the equivalent weight of C in CO2; W would be 6 if data is to be expressed in terms of

C, (mg CO2-C).

Statistical analyses

Treatment effects on cumulative C-mineralization rate (residue breakdown), the percentage of

residue decomposed, first-order decay kinetic parameters such as decay constant and the num-

ber of days to decompose the residue was analyzed using an analysis of variance (ANOVA).

Statistical analyses were performed in JMP 13.0 (SAS Institute, Cary, NC, USA). Tukey’s multi-

ple comparison procedures, as well as the corresponding letter grouping method, was used to

separate the treatment means as post-hoc multiple comparisons where p� 0.05.

Results

Characterization of residue

The barley residue had a TN of 4.6 g kg-1 dry residue whereas, the TC was 387.5 g kg-1 dry

residue which gave a C:N ratio of 85:1 (Table 2). In general, a higher C:N ratio is expected for

barley residue as a cereal crop compared to broadleaf crops which matched our data. The cellu-

lose and hemicellulose content of the barley residue were 447 and 670 g kg-1 dry residue,

respectively, where the lignin content was 64 g kg-1 dry residue.

Daily and cumulative decomposition of barley residues

The daily response of the C-mineralization rate (as measured by CO2 released) with respect to

the residue placement (surface vs. incorporated) and residue size (chopped vs. sieved) were

variable. Both the soils showed a similar pattern in daily residue decomposition breakdown

(Fig 1A and 1B). In general, an initial C-mineralization flush by individual treatment combina-

tions for both soils ranged between 2 to 5 days (Fig 1A and 1B). However, the accelerated ini-

tial mineralization rate at the beginning of the experiment was obtained quicker and at a
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greater magnitude for the sieved residues (at Day 1 to 2) than chopped (at Day 3 to 5) for both

surface application and incorporation. The highest evolution of CO2-C of 8.3 g kg-1 dry residue

was observed on Day 1 from the incorporated-sieved application for both the soils (Fig 1A and

1B). The cumulative decomposition of barley residue increased until it reached a plateau for

both the soils (Fig 2A and 2B. The pattern of this cumulative decomposition over a period of

Table 2. Basic properties of barley† residue samples used in laboratory incubation study conducted at the Aber-

deen Research and Extension Center, Aberdeen, ID, USA.

Properties Unit (on dry residue weight basis) Average

Total N g kg-1 4.6(±0.9) ††

Total C g kg-1 387.5(±4.9)

C:N - 85(±1.7)

Cellulose g kg-1 447(±16)

Hemicellulose g kg-1 670(±16)

Lignin g kg-1 64(±2.0)

Ash g kg-1 120(±8.0)

†barley cultivar: Harrington
††values in the parenthesis indicate standard errors.

N; nitrogen, C; carbon, C: N; carbon to nitrogen ratio.

https://doi.org/10.1371/journal.pone.0232896.t002

Fig 1. Amount of CO2-C released (rate as calculated per kg of residues) on daily basis for barley residue

decomposition under residue placement and residue size treatment combinations for A) sandy and B) sandy loam

soils in 50-days’ laboratory incubation study at 25˚C.

https://doi.org/10.1371/journal.pone.0232896.g001
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50-d followed a similar trend for all the treatment combination as daily C-mineralization rate

for both soils (Fig 2A and 2B).

Effects of residue management on barley residue decomposition

The ANOVA results indicated that residue placement, residue size, and their interaction had a

significant effect on cumulative CO2-C release, percent of residue decomposed, and calculated

residue decay constant over a period of 50-d (p<0.001) (Table 3). There were no significant

effects of soil type (sandy vs. sandy loam) on any of the measured output in our study although

two soils were textually and chemically different. Similarly, the higher-order interaction

among residue placement, residue size, and soil types were all non-significant for cumulative

CO2-C release, decay constant, and percent of residue decomposed. Averaged across soil

types, the highest (107 g kg-1 dry residue) and lowest (69 g kg-1 dry residue) amount of cumula-

tive CO2-C released over 50-d were from surface-chopped and incorporated-sieved treat-

ments, respectively (Fig 3). However, there were no significant differences in CO2-C release

between surface-sieved (101 g kg-1 dry residue) and incorporated-chopped (98 g kg-1 dry resi-

due) treatments (Fig 3A).

As expected, the percentage of residue decomposed followed the same pattern as the C-

mineralization rate for various treatment combinations (Fig 3B). When averaged across soil

types, the highest and lowest amount of residue decomposed over a 50-d decomposition

period was measured in surface-chopped (27%) and incorporated-sieved (18%), respectively

(Fig 3B). The surface-sieved vs. incorporated-chopped treatments showed no significant

Fig 2. Amount of cumulative CO2-C released (rate as calculated per kg of residues) for barley residue

decomposition under residue placement and residue size treatment combinations for A) sandy and B) sandy loam

soils in 50-days’ laboratory incubation study at 25˚C.

https://doi.org/10.1371/journal.pone.0232896.g002
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differences in their mean values of percentage of residue decomposed (25% for both the

treatments).

First order decay kinetics and half-life of barley residues

The ANOVA results indicated that the residue placement, residue size, and their interaction

have a significant effect on the decay constants, t(0.5), t(0.75) and t(0.99) residue C-mineralized

estimated (p<0.001) (Table 3). There were no significant effects of soil types on any of the cal-

culated parameters. The first-order decay kinetics parameters calculated using MCMC model-

ing approach were well aligned with model parameter uncertainty. In addition the sensitivity

analyses were performed and model predictions were satisfactory as shown in (S1 Fig). The

highest k value (0.0083±0.0005 d-1; R2 = 0.997) with a predicted residue half-life to mineralize

barley residue (t(0.5)) of about 80+3 d was obtained for surface-chopped applied residues when

averaged across soils (Table 4). This value did not statistically differ from surface-sieved

(k = 0.0080±0.0006 d-1; R2 = 0.993) and incorporated-chopped (k = 0.0079±0.0007 d-1; R2 =

0.993) treatment combinations. The lowest k value (0.0054±0.0005 d-1; R2 = 0.988) was calcu-

lated for incorporated-sieved residues when averaged across soils types (Table 4). Incorpo-

rated-sieved treatments would require the maximum duration to decompose 50% of the

residue (~128 d). The k and t(0.5) values of incorporated-sieved residues differ significantly

from other three treatment combinations (i.e. surface-chopped, surface-sieved, and incorpo-

rated-chopped treatments). Similar trends were found for t(0.75) and t(0.99) for all the treatment

combinations (Table 4).

Discussions

Daily and cumulative decomposition of barley residues

The initial flush from C-mineralization for crop residues under laboratory, greenhouse, or

field conditions is usually significantly different from the decomposition rate for the rest of the

experimental duration [5,10,11,36]. This is because the maximum decomposition rate occurs

in this period due to soil nutrient dynamics, moisture availability (and soil aeration status),

and labile organic material that first undergo decomposition by triggering microbial activity.

The initial higher flush of barley straw breakdown or greater C-mineralization in our study

was also observed in other cereal residue decomposition studies [5,10,11,31,36].

The rapid rate of C-mineralization from residues in the initial phase (Day 1 to 2) was possi-

bly due to a higher surface area and associated stimulation in microbial activities in sieved

compared to the chopped residues (Fig 1A and 1B). Our results were in agreement with the

findings by [36] who showed the greater mineralization by finer sized wheat straw at the initial

Table 3. Analysis of variance (ANOVA) P values for cumulative decomposition rate, percentage residue decomposed, decay constant (k) and associated parameters

over 50-days’ laboratory incubation study for barley residue decomposition conducted at the Aberdeen Research and Extension Center, Aberdeen, ID, USA.

Sources of variation Cumulative CO2-C decomposition Residue decomposed Decay constant (k) t(0.5) t(0.75) t(0.99)

Residue placement (RP) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Residue size (RS) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Soil type (ST) 0.09 0.09 0.34 0.07 0.23 0.09

RP x RS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

RP x ST 0.17 0.16 0.07 0.18 0.09 0.20

RS x ST 0.10 0.10 0.66 0.13 0.72 0.12

RP x RS x ST 0.24 0.27 0.09 0.35 0.10 0.41

https://doi.org/10.1371/journal.pone.0232896.t003

PLOS ONE Barley residue management and residue decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0232896 May 13, 2020 9 / 16

https://doi.org/10.1371/journal.pone.0232896.t003
https://doi.org/10.1371/journal.pone.0232896


phase of residue addition (~1–2 days). After the initial transitory phase, the decreased rate of

decomposition for surface-sieved residues might be attributed due to the exhaustion of those

easily decomposable C sources and possibly due to the residue-mineral interaction later in the

experiment [11]. They noted a similar pattern of decomposition where finer sized rye and

wheat residues (0.05- to 1-mm sieved particles of residues) produced less CO2-C than larger

sized residues (7-mm) in their experiment when mixed with a silty soil at 25˚C in a laboratory

incubation.

Fig 3. Effects of residue placement and residue size on A) cumulative CO2-C released (rate as calculated per kg of residues)

and B) percentage of residue decomposed for barley residue decomposition averaged over two soils types in 50-days’

laboratory incubation study at 25 ˚C.

https://doi.org/10.1371/journal.pone.0232896.g003
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Enhancing the physical contact between crop residues and soil minerals may have further

promoted the residue-mineral interactions, resulting in lower cumulative decomposition in

the incorporated treatment than the surface treatment [5,11,37]. The rate of residue decompo-

sition, subsequently, declined after approximately Day 5 regardless of treatment combination

for both the soils (Fig 1A and 1B). This pattern followed other studies conducted either in field

or laboratory with residues from different cereal crops grown in variable soil types

[5,10,11,31]. These decreased rates of CO2 evolution from the residues were followed by a

slight increase at Day 8 to 9 for all treatments and again decreased until the end of the experi-

ment. The difference in the decomposition rate among treatment combinations remained con-

sistent except for the surface applied sieved residues which had a peak CO2 rate of 5.8 g kg-1

dry residue on Day 11.

Effect of residue management on barley residue decomposition

Our study indicated that during the duration of the experiment the application of chopped

residues on the surface of soils (Fig 3A and 3B) representing a no-tillage condition, promotes

residue breakdown slightly faster than incorporated-chopped residue representing the conven-

tional tillage practices and is supported by other findings where a similar pattern was observed

[10,38]. Although no microbial community analyses were performed under the present study,

we visually observed greater fungal growth on the surface applied residue than incorporated.

Thus, different microbial interactions with the soil-residue mixture could be expected with

incorporated residues as compared to surface residues. Our findings were also supported by

[38], that reported a reduced rate of residue breakdown due to the lack of fungal communities

when sorghum (sorghum bicolor L.) residues were incorporated as compared to the residue

that was left on the surface of the soil. The results from our study could have value in promot-

ing conservation practices and preserving residues on the soil surface rather than incorpo-

ration via conventional tillage practices in the PNW where soil erosion is a reasonable concern

for soil and water quality maintenance. This is worth mentioning that sieved residue had

higher decomposition rate than chopped residue in the initial stage, which may be due to

higher surface area and thus more access for microbial reaction. However, the trend in the

later stage of decomposition phase (after ~Day 5) reverse.

Our results provide evidence that the physical size of the barley residue (chopped vs. sieved)

had a significant effect on the C-mineralization rate. For example, the surface-chopped and

incorporated-chopped residue produced significantly greater CO2-C than surface-sieved and

incorporated-sieved residues, respectively (Fig 3A). The surface-chopped residues were more

conducive to decomposition (decomposed 27% of applied residue) and produced greater

amount of CO2-C than surface-sieved residues over a 50-d period. The sieved residues may

Table 4. First-order decay model parameters for sequential barley residue decomposition under residue placement and residue size treatment combinations aver-

aged across soil types in 50-days’ laboratory incubation study at 25˚C.

Residue

placement

Residue size Mean k-values (d-1) (±95%

CI)

Goodness of fit statistics

(R2)

Mean t(0.5) (±95%

CI)

Mean t(0.75) (±95%

CI)

Mean t(0.99) (±95%

CI)

Surface Chopped 0.0083a††(±0.0005) 0.997 80b (±3) 165b (±6) 552b (±40)

Sieved 0.0080a (±0.0006) 0.993 86b (±5) 171b (±10) 569b (±34)

Incorporated Chopped 0.0079a (±0.0007) 0.993 88b (±8) 175b (±16) 582b (±53)

Sieved 0.0054b (±0.0005) 0.988 128a (±13) 257a (±22) 853a (±72)

Different letters for each parameter indicate significant differences between residue management, residue size and their interaction, as compared using Tukey’s

Protected honest significant difference (HSD) test at p<0.05, respectively. CI; confidence interval; SL; sandy loam soils.

https://doi.org/10.1371/journal.pone.0232896.t004
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have been stabilized by association with soil mineral surfaces, rendering them inaccessible to

decomposition as compared to the sieved residues [11,37,39]. Differences were observed in

the initial decomposition rate through day-5 which afterwards disappeared. In addition,

the amount of C that were not mineralized in the initial period decomposition (~ 5 days)

remained quite stabilized in the soil for longer duration after initial flush of CO2-C release.

Thus, the fine-sized grinding of residue provided no advantage over the chopping of residues

in terms N release (and subsequent crop uptake) from decomposing residue for sustainable

agricultural production [11]. We conclude that extreme mulching practices did not have an

advantage in terms of C-mineralization and residue breakdown. Our results were supported

by other field studies which showed greater cereal reside decomposition was observed in sur-

face-chopped applied residue by maintaining a larger particle size of residues in the field

[10,11,31,36].

Our study did not show any significant differences in the cumulative CO2-C release by

the two soils (Table 3). These two soils possess similar soil texture, however, these soils were

selected as they are representative of the relatively similar soils found in the study region

(south-eastern Idaho) (Table 1). Due to their similar soil texture, the CO2-C mineralized from

both the soils irrespective of the type of residue added were similar. This might be due to the

fact that both soils have lower clay or organic matter content (0.9–1.5%) which has influenced

the aeration and moisture status of the soil-residue mixtures [18]. Further, the presence of clay

mineral (organo-clay mineral association) controls the magnitude of residue-mineral interac-

tions which was not significantly different between these two soil types as both are relatively

low in clay content. Additionally, other associated soil biological factors such as SOM did not

vary widely which could have possibly made a difference in microbial populations and nutrient

dynamics in these two soil types, and thus, differences in CO2-C release from the soils.

Prediction of barley residue decomposition: Modeling approach

The first-order kinetic model parameters were calculated using the MCMC approach

described the C-mineralization during the initial stages of barley residue decomposition

(Table 4). Our study indicated that the highest and lowest rate of both C-mineralization and

percentage of residue decomposed were reported from surface-chopped and incorporated-

sieved residues, respectively. This resulted in higher values of k for surface-chopped residues,

which did not differ from surface sieved or incorporated chopped, as compared to the lowest k

values in incorporated-sieved residues. It implies that the incorporated-sieved residues would

take the longest time to decompose 50%, 75%, and 99% of the residues and only 18% of the res-

idues were decomposed under the course of the experiment (50-d) (Table 4). Further micro-

bial community analyses which estimates the population of heterotrophic microorganisms

(e.g. fungi, different bacterial phylum, etc.) and information regarding their community com-

position and structure (e.g. bacterial:fungal ratio determination using Phospholipid-derived

fatty acid; PLFAs [40]) across different soil types might explain the variability in k values for

various treatment combinations.

The implication of the calculation of decay constant and predicted number of days to

decompose a certain percentage of residue have serious consequences on residues remaining

in the field. For example, if we aim towards a residue management practice that will facilitate

residue decomposition and increase the nutrient availability especially mineral C and N to sub-

sequent crops. However, faster residue mineralization might have a priming effects by increas-

ing the decomposition of native organic matter, thus, reducing the soil’s organic matter

buildup [41] The enhancement in the native SOM by addition of fresh substrate in the initial

stage of this study was driven by a temporary increase in the biomass feeding on the more

PLOS ONE Barley residue management and residue decomposition

PLOS ONE | https://doi.org/10.1371/journal.pone.0232896 May 13, 2020 12 / 16

https://doi.org/10.1371/journal.pone.0232896


labile soil C [11]. However, to capture the priming effect, it would require labeling of either

soil or the residue, which warrant a potential future study.

The most critical factor in soil C sequestration in this type of study is the enhanced physical

contact between decomposing residues and soil minerals or organic-mineral contacts. For

example, surface application of crop residues can reduce soil disturbance and increase SOC

content but heavily respired by microbial communities, thus potentially contributing most to

the formation of SOC [11]. On the other hand, incorporated residue in the soil can potentially

enhance the SOC stock by having limited physical contact between residues and soil minerals

[37]. Thus, the difference between the C stabilized from residue incorporation and C mineral-

ized from tillage determines the net effect on the SOC stocks. These results can suggest that

enhancement of physical contact/protection between organic materials and soil minerals (and/

or organo-mineral interaction) may promote C stabilization as determined by various treat-

ment combinations in our study. To that end, we need to realize that two potential strategies

need to be considered for soil C stock in agricultural soils such as no-tillage agricultural prac-

tices and crop residue or manure incorporation. Therefore, a better understanding of mecha-

nisms that control organic-mineral interactions is needed for us to ameliorate current

agricultural practices that facilitate SOC retention and sequestration.

Conclusions

Our study considered some critical factors in barley post-harvest residue breakdown such

as residue application methods, residue, size and soil types. This 50-d laboratory incubation

study resulted in the C-mineralization rate of barley residues in the following order: surface-

chopped>surface-sieved = incorporated-chopped>incorporated-sieved. Results indicated the

magnitude of mineralizable C released from residue decomposition under different treatments

were variable. Additionally, the effects of no-till and conventional tillage as represented by

surface vs. incorporated residue application methods on barley residue decomposition under

laboratory conditions were documented. Thus, the relevance and application of our findings

would be critical in providing practical information on residue decomposition of a barley crop

for various residue application methods. Although our study indicated that it is possible to

obtain a greater residue C-mineralization for surface-chopped residue than surface sieved

under controlled laboratory conditions, it may impact SOM build up. However, barley residue

decomposition study under field conditions along with microcosm experimentation in labora-

tory, and measured at varying times during the crop growing season is warranted to achieve a

definite conclusion. Besides, the inclusion of residues in soils with varying SOM content and/

or texture profile (e.g. fine- vs. coarse-textured) would be helpful to achieve a definite conclu-

sion. As recommendations are developed, they should consider the advantages and disadvan-

tages of faster or slower residue breakdown under field condition, which is location- and soil-

specific. Thus, it would be interesting to see if various residue management practices have cou-

pling effects on soil C (soil C formation and loss) and N cycle (nitrification and denitrification)

processes.
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