152 research outputs found
CCD Readout Electronics for the Subaru Prime Focus Spectrograph
We present details of the design for the CCD readout electronics for the
Subaru Telescope Prime Focus Spectrograph (PFS). The spectrograph is comprised
of four identical spectrograph modules, each collecting roughly 600 spectra.
The spectrograph modules provide simultaneous wavelength coverage over the
entire band from 380 nm to 1260 nm through the use of three separate optical
channels: blue, red, and near infrared (NIR). A camera in each channel images
the multi-object spectra onto a 4k x 4k, 15 um pixel, detector format. The two
visible cameras use a pair of Hamamatsu 2k x 4k CCDs with readout provided by
custom electronics, while the NIR camera uses a single Teledyne HgCdTe 4k x 4k
detector and ASIC Sidecar to read the device.
The CCD readout system is a custom design comprised of three electrical
subsystems: the Back End Electronics (BEE), the Front End Electronics (FEE),
and a Pre-amplifier. The BEE is an off-the-shelf PC104 computer, with an
auxiliary Xilinx FPGA module. The computer serves as the main interface to the
Subaru messaging hub and controls other peripheral devices associated with the
camera, while the FPGA is used to generate the necessary clocks and transfer
image data from the CCDs. The FEE board sets clock biases, substrate bias, and
CDS offsets. It also monitors bias voltages, offset voltages, power rail
voltage, substrate voltage and CCD temperature. The board translates LVDS clock
signals to biased clocks and returns digitized analog data via LVDS. Monitoring
and control messages are sent from the BEE to the FEE using a standard serial
interface. The Pre-amplifier board resides behind the detectors and acts as an
interface to the two Hamamatsu CCDs. The Pre-amplifier passes clocks and biases
to the CCDs, and analog CCD data is buffered and amplified prior to being
returned to the FEE.Comment: 14 pages, 15 figures, SPIE ATI 2014, Montrea
Data Reduction Pipeline for the CHARIS Integral-Field Spectrograph I: Detector Readout Calibration and Data Cube Extraction
We present the data reduction pipeline for CHARIS, a high-contrast
integral-field spectrograph for the Subaru Telescope. The pipeline constructs a
ramp from the raw reads using the measured nonlinear pixel response, and
reconstructs the data cube using one of three extraction algorithms: aperture
photometry, optimal extraction, or fitting. We measure and apply both
a detector flatfield and a lenslet flatfield and reconstruct the wavelength-
and position-dependent lenslet point-spread function (PSF) from images taken
with a tunable laser. We use these measured PSFs to implement a -based
extraction of the data cube, with typical residuals of ~5% due to imperfect
models of the undersampled lenslet PSFs. The full two-dimensional residual of
the extraction allows us to model and remove correlated read noise,
dramatically improving CHARIS' performance. The extraction produces a
data cube that has been deconvolved with the line-spread function, and never
performs any interpolations of either the data or the individual lenslet
spectra. The extracted data cube also includes uncertainties for each spatial
and spectral measurement. CHARIS' software is parallelized, written in Python
and Cython, and freely available on github with a separate documentation page.
Astrometric and spectrophotometric calibrations of the data cubes and PSF
subtraction will be treated in a forthcoming paper.Comment: 18 pages, 15 figures, 3 tables, replaced with JATIS accepted version
(emulateapj formatted here). Software at
https://github.com/PrincetonUniversity/charis-dep and documentation at
http://princetonuniversity.github.io/charis-de
The SEGUE Stellar Parameter Pipeline. IV. Validation with an Extended Sample of Galactic Globular and Open Clusters
Spectroscopic and photometric data for likely member stars of five Galactic
globular clusters (M3, M53, M71, M92, and NGC 5053) and three open clusters
(M35, NGC 2158, and NGC 6791) are processed by the current version of the SEGUE
Stellar Parameter Pipeline (SSPP), in order to determine estimates of
metallicities and radial velocities for the clusters. These results are then
compared to values from the literature. We find that the mean metallicity
() and mean radial velocity () estimates for each cluster are
almost all within 2{\sigma} of the adopted literature values; most are within
1{\sigma}. We also demonstrate that the new version of the SSPP achieves small,
but noteworthy, improvements in estimates at the extrema of the
cluster metallicity range, as compared to a previous version of the pipeline
software. These results provide additional confidence in the application of the
SSPP for studies of the abundances and kinematics of stellar populations in the
Galaxy.Comment: 98 pages, 31 figures; accepted for publication in A
An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data
We present an algorithm to photometrically calibrate wide field optical
imaging surveys, that simultaneously solves for the calibration parameters and
relative stellar fluxes using overlapping observations. The algorithm decouples
the problem of "relative" calibrations, from that of "absolute" calibrations;
the absolute calibration is reduced to determining a few numbers for the entire
survey. We pay special attention to the spatial structure of the calibration
errors, allowing one to isolate particular error modes in downstream analyses.
Applying this to the Sloan Digital Sky Survey imaging data, we achieve ~1%
relative calibration errors across 8500 sq.deg. in griz; the errors are ~2% for
the u band. These errors are dominated by unmodelled atmospheric variations at
Apache Point Observatory. These calibrations, dubbed "ubercalibration", are now
public with SDSS Data Release 6, and will be a part of subsequent SDSS data
releases.Comment: 16 pages, 17 figures, matches version accepted in ApJ. These
calibrations are available at http://www.sdss.org/dr
Prime Focus Spectrograph - Subaru's future -
The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and
Redshifts (SuMIRe) project has been endorsed by Japanese community as one of
the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea,
Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology
with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution.
Taking advantage of Subaru's wide field of view, which is further extended with
the recently completed Wide Field Corrector, PFS will enable us to carry out
multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A
microlens is attached at each fiber entrance for F-ratio transformation into a
larger one so that difficulties of spectrograph design are eased. Fibers are
accurately placed onto target positions by positioners, each of which consists
of two stages of piezo-electric rotary motors, through iterations by using
back-illuminated fiber position measurements with a wide-field metrology
camera. Fibers then carry light to a set of four identical fast-Schmidt
spectrographs with three color arms each: the wavelength ranges from 0.38
{\mu}m to 1.3 {\mu}m will be simultaneously observed with an average resolving
power of 3000. Before and during the era of extremely large telescopes, PFS
will provide the unique capability of obtaining spectra of 2400
cosmological/astrophysical targets simultaneously with an 8-10 meter class
telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil,
Caltech/JPL, Princeton, & JHU in USA, LAM in France, ASIAA in Taiwan, and
NAOJ/Subaru.Comment: 13 pages, 11 figures, submitted to "Ground-based and Airborne
Instrumentation for Astronomy IV, Ian S. McLean, Suzanne K. Ramsay, Hideki
Takami, Editors, Proc. SPIE 8446 (2012)
Recommended from our members
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample
We present measurements of galaxy clustering from the Baryon Oscillation
Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III
(SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains
264,283 massive galaxies covering 3275 square degrees with an effective
redshift z=0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance
Lambda-CDM cosmological model, this sample covers an effective volume of 2.2
Gpc^3, and represents the largest sample of the Universe ever surveyed at this
density, n = 3 x 10^-4 h^-3 Mpc^3. We measure the angle-averaged galaxy
correlation function and power spectrum, including density-field reconstruction
of the baryon acoustic oscillation (BAO) feature. The acoustic features are
detected at a significance of 5\sigma in both the correlation function and
power spectrum. Combining with the SDSS-II Luminous Red Galaxy Sample, the
detection significance increases to 6.7\sigma. Fitting for the position of the
acoustic features measures the distance to z=0.57 relative to the sound horizon
DV /rs = 13.67 +/- 0.22 at z=0.57. Assuming a fiducial sound horizon of 153.19
Mpc, which matches cosmic microwave background constraints, this corresponds to
a distance DV(z=0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most
precise distance constraint ever obtained from a galaxy survey. We place this
result alongside previous BAO measurements in a cosmological distance ladder
and find excellent agreement with the current supernova measurements. We use
these distance measurements to constrain various cosmological models, finding
continuing support for a flat Universe with a cosmological constant.Comment: 33 page
The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey
We present the design and performance of the multi-object fiber spectrographs
for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon
Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999
on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the
spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II
surveys, enabling a wide variety of Galactic and extra-galactic science
including the first observation of baryon acoustic oscillations in 2005. The
spectrographs were upgraded in 2009 and are currently in use for BOSS, the
flagship survey of the third-generation SDSS-III project. BOSS will measure
redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha
absorption of 160,000 high redshift quasars over 10,000 square degrees of sky,
making percent level measurements of the absolute cosmic distance scale of the
Universe and placing tight constraints on the equation of state of dark energy.
The twin multi-object fiber spectrographs utilize a simple optical layout
with reflective collimators, gratings, all-refractive cameras, and
state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in
two channels over a bandpass covering the near ultraviolet to the near
infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven
heritage, the spectrographs were upgraded for BOSS with volume-phase
holographic gratings and modern CCD detectors, improving the peak throughput by
nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000
nm, and increasing the number of fibers from 640 to 1000 per exposure. In this
paper we describe the original SDSS spectrograph design and the upgrades
implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and
accepted by AJ. Provides background for the instrument responsible for SDSS
and BOSS spectra. 4th in a series of survey technical papers released in
Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral
Classification), and arXiv:1208.0022 (BOSS Overview
Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
PFS (Prime Focus Spectrograph), a next generation facility instrument on the
8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed,
optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394
reconfigurable fibers will be distributed over the 1.3 deg field of view. The
spectrograph has been designed with 3 arms of blue, red, and near-infrared
cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure
at a resolution of ~1.6-2.7A. An international collaboration is developing this
instrument under the initiative of Kavli IPMU. The project is now going into
the construction phase aiming at undertaking system integration in 2017-2018
and subsequently carrying out engineering operations in 2018-2019. This article
gives an overview of the instrument, current project status and future paths
forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and
Instrumentation 201
The Seventh Data Release of the Sloan Digital Sky Survey
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey
(SDSS), marking the completion of the original goals of the SDSS and the end of
the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most
of the roughly 2000 deg^2 increment over the previous data release lying in
regions of low Galactic latitude. The catalog contains five-band photometry for
357 million distinct objects. The survey also includes repeat photometry over
250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A
coaddition of these data goes roughly two magnitudes fainter than the main
survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2
in the Northern Galactic Cap, closing the gap that was present in previous data
releases. There are over 1.6 million spectra in total, including 930,000
galaxies, 120,000 quasars, and 460,000 stars. The data release includes
improved stellar photometry at low Galactic latitude. The astrometry has all
been recalibrated with the second version of the USNO CCD Astrograph Catalog
(UCAC-2), reducing the rms statistical errors at the bright end to 45
milli-arcseconds per coordinate. A systematic error in bright galaxy photometr
is less severe than previously reported for the majority of galaxies. Finally,
we describe a series of improvements to the spectroscopic reductions, including
better flat-fielding and improved wavelength calibration at the blue end,
better processing of objects with extremely strong narrow emission lines, and
an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor
correction
- …