592 research outputs found
Evaluation of the Importance of Time-Frequency Contributions to Speech Intelligibility in Noise
Recent studies on binary masking techniques make the assumption that each time-frequency (T-F) unit contributes an equal amount to the overall intelligibility of speech. The present study demonstrated that the importance of each T-F unit to speech intelligibility varies in accordance with speech content. Specifically, T-F units are categorized into two classes, speech-present T-F units and speech-absent T-F units. Results indicate that the importance of each speech-present T-F unit to speech intelligibility is highly related to the loudness of its target component, while the importance of each speech-absent T-F unit varies according to the loudness of its masker component. Two types of mask errors are also considered, which include miss and false alarm errors. Consistent with previous work, false alarm errors are shown to be more harmful to speech intelligibility than miss errors when the mixture signal-to-noise ratio (SNR) is below 0 dB. However, the relative importance between the two types of error is conditioned on the SNR level of the input speech signal. Based on these observations, a mask-based objective measure, the loudness weighted hit-false, is proposed for predicting speech intelligibility. The proposed objective measure shows significantly higher correlation with intelligibility compared to two existing mask-based objective measures
A stochastic model for the evolution of the web allowing link deletion
Recently several authors have proposed stochastic evolutionary models for the growth of the web graph and other networks that give rise to power-law distributions. These models are based on the notion of preferential attachment leading to the ``rich get richer'' phenomenon. We present a generalisation of the basic model by allowing deletion of individual links and show that it also gives rise to a power-law distribution. We derive the mean-field equations for this stochastic model and show that by examining a snapshot of the distribution at the steady state of the model, we are able to tell whether any link deletion has taken place and estimate the link deletion probability. Our model enables us to gain some insight into the distribution of inlinks in the web graph, in particular it suggests a power-law exponent of approximately 2.15 rather than the widely published exponent of 2.1
Comparing Aspects Of The Process Quality In Six European Early Childhood Educational Settings
The European project ‘Early Change’ (http://earlychange.teithe.gr) attempts to evaluate the quality of early childhood education (ECE) environments of six European countries, Greece, Portugal, Finland, Denmark, Cyprus and Romania. The purpose of this paper is to compare the level of two dimensions of the process quality of these environments a) Space & Furnishings, and b) Personal Care Routines.
Theorists, practitioners and researchers agree that in order to provide qualitative education to young children, one of the basic needs of all children must be met; that need is the protection of their health and their safety. A high quality early childhood education program must contain a safe and stimulating environment for the child (Lindsey, 1998). Such an environment includes indoor space, outdoor space, furniture, and room arrangement, and it is considered an integral part of a high quality early childhood program. 117 early educators from the six participating countries attended the training seminars about the evaluation of ECE quality using the Early Childhood Environmental Rating Scale-R (ECERS-R). The trained educators evaluated the 8 indicators of the subscale ‘space & furnishings’ and the six
indicators of the subscale ‘personal care routines’ in approximately 600 early childhood classrooms from six European countries.
The results of this study highlight the similarities and differences concerning the specific dimensions of
the process quality of ECE environments in six European countries, and reflect the diversity of ECE environment across these countries. The findings of this study may provide a valuable insight to researchers and educational policy makers for an enhanced understanding of the cultural diversities and the strengthening of the common values and targets of the European Union
A universal two-way approach for estimating unknown frequencies for unknown number of sinusoids in a signal based on eigenspace analysis of Hankel matrix
YesWe develop a novel approach to estimate the n unknown constituent frequencies of a noiseless signal that comprises of unknown number, n, of sinusoids of unknown phases and unknown amplitudes. The new two way approach uses two constraints to accurately estimate the unknown frequencies of the sinusoidal components in a signal. The new approach serves as a verification test for the estimated unknown frequencies through the estimated count of the unknown number of frequencies. The Hankel matrix, of the time domain samples of the signal, is used as a basis for further analysis in the Pisarenko harmonic decomposition. The new constraints, the Existence Factor (EF) and the Component Factor (CF), have been introduced in the methodology based on the relationships between the components of the sinusoidal signal and the eigenspace of the Hankel matrix. The performance of the developed approach has been tested to correctly estimate any number of frequencies within a signal with or without a fixed unknown bias. The method has also been tested to accurately estimate the very closely spaced low frequencies.Innovate U
The relationship between students’ engagement and the development of Transactive Memory Systems in MUVE: An experience report
Student engagement is a very important topic in higher education hence, it drew a lot of research interest over the years. The use of educational Multi-User Virtual Environments (MUVEs) that provide synchronous interaction, dynamic, interactive and social learning experiences have the potential to increase student engagement and contribute to their learning experience. Due to increased social and cognitive presence, the use of such environments can result in greater student engagement when compared to traditional asynchronous learning environments. In this work, we hypothesized that students’ engagement in collaborative learning activities will increase if Transactive Memory System (TMS) constructs are present. Thus, we employed the theory of TMS that emphasizes the importance of Specialization, Coordination and Credibility between members in a team. The results show that there is a significant correlation between the development of TMS and students’ engagement. In addition, further quantitative and observation analysis reveals some interesting facts about students’ engagement with respect to their collaboration in group activities
DNA strand break repair and neurodegeneration.
A number of DNA repair disorders are known to cause neurological problems. These disorders can be broadly characterised into early developmental, mid-to-late developmental or progressive. The exact developmental processes that are affected can influence disease pathology, with symptoms ranging from early embryonic lethality to late-onset ataxia. The category these diseases belong to depends on the frequency of lesions arising in the brain, the role of the defective repair pathway, and the nature of the mutation within the patient. Using observations from patients and transgenic mice, we discuss the importance of double strand break repair during neuroprogenitor proliferation and brain development and the repair of single stranded lesions in neuronal function and maintenance
Dual-modality gene reporter for in vivo imaging
The ability to track cells and their patterns of gene expression in living organisms can increase our understanding of tissue development and disease. Gene reporters for bioluminescence, fluorescence, radionuclide, and magnetic resonance imaging (MRI) have been described but these suffer variously from limited depth penetration, spatial resolution, and sensitivity. We describe here a gene reporter, based on the organic anion transporting protein Oatp1a1, which mediates uptake of a clinically approved, Gd(3+)-based, hepatotrophic contrast agent (gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid). Cells expressing the reporter showed readily reversible, intense, and positive contrast (up to 7.8-fold signal enhancement) in T1-weighted magnetic resonance images acquired in vivo. The maximum signal enhancement obtained so far is more than double that produced by MRI gene reporters described previously. Exchanging the Gd(3+) ion for the radionuclide, (111)In, also allowed detection by single-photon emission computed tomography, thus combining the spatial resolution of MRI with the sensitivity of radionuclide imaging
A Modular Millifluidic Platform for the Synthesis of Iron Oxide Nanoparticles with Control over Dissolved Gas and Flow Configuration
Gas–liquid reactions are poorly explored in the context of nanomaterials synthesis, despite evidence of significant effects of dissolved gas on nanoparticle properties. This applies to the aqueous synthesis of iron oxide nanoparticles, where gaseous reactants can influence reaction rate, particle size and crystal structure. Conventional batch reactors offer poor control of gas–liquid mass transfer due to lack of control on the gas–liquid interface and are often unsafe when used at high pressure. This work describes the design of a modular flow platform for the water-based synthesis of iron oxide nanoparticles through the oxidative hydrolysis of Fe2+ salts, targeting magnetic hyperthermia applications. Four different reactor systems were designed through the assembly of two modular units, allowing control over the type of gas dissolved in the solution, as well as the flow pattern within the reactor (single-phase and liquid–liquid two-phase flow). The two modular units consisted of a coiled millireactor and a tube-in-tube gas–liquid contactor. The straightforward pressurization of the system allows control over the concentration of gas dissolved in the reactive solution and the ability to operate the reactor at a temperature above the solvent boiling point. The variables controlled in the flow system (temperature, flow pattern and dissolved gaseous reactants) allowed full conversion of the iron precursor to magnetite/maghemite nanocrystals in just 3 min, as compared to several hours normally employed in batch. The single-phase configuration of the flow platform allowed the synthesis of particles with sizes between 26.5 nm (in the presence of carbon monoxide) and 34 nm. On the other hand, the liquid–liquid two-phase flow reactor showed possible evidence of interfacial absorption, leading to particles with different morphology compared to their batch counterpart. When exposed to an alternating magnetic field, the particles produced by the four flow systems showed ILP (intrinsic loss parameter) values between 1.2 and 2.7 nHm2/kg. Scale up by a factor of 5 of one of the configurations was also demonstrated. The scaled-up system led to the synthesis of nanoparticles of equivalent quality to those produced with the small-scale reactor system. The equivalence between the two systems is supported by a simple analysis of the transport phenomena in the small and large-scale setup
A stochastic evolutionary model generating a mixture of exponential distributions
Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media.
In this paper, we extend the stochastic urn-based model proposed in \cite{FENN15} so that it can generate mixture models,
in particular, a mixture of exponential distributions.
The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data.
We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model
The Expanding Mycovirome of Aspergilli
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host’s virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.Peer reviewe
- …
