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3 A Universal Two Way Approach for Estimating Unknown 
5 Frequencies for Unknown Number of Sinusoids in a Signal Based 
6 on Eigenspace Analysis of Hankel Matrix 
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14 

15 Abstract We develop a novel approach to estimate 

16 the n unknown constituent frequencies of a noiseless 

17 signal that comprises of unknown number, n, of 

18 sinusoids of unknown phases and unknown 

19 amplitudes. The new two way approach uses two 
20 constraints to accurately estimate the unknown 

21 frequencies of the sinusoidal components in a signal. 
22 The new approach serves as a verification test for the 
23 estimated unknown frequencies through the estimated 

24 count of the unknown number of frequencies. The 

25 Hankel matrix, of the time domain samples of the 
26 signal, is used as a basis for further analysis in the 

Keywords  Harmonic  Analysis,  Frequency  Estimation, 
Spectral Analysis 

 
 

1. INTRODUCTION 

Consider a signal y(t) consisting of multiple (n) sinusoids 

such that each sinusoid can have unknown amplitude (a) 

and unknown phase (θ). Equation (1) represents such a 

signal with a fixed bias of C0. 

  

27 Pisarenko harmonic decomposition. The new 

28 constraints, the Existence Factor (EF) and the 
29 Component Factor (CF), have been introduced in the 

  ( )         ∑ (      (         ) 

(1) 

30 methodology based on the relationships between the 

31 components    of   the sinusoidal signal and the 

32 eigenspace of the Hankel matrix. The performance of 

33 the developed approach has been tested to correctly 

34 estimate any number of frequencies within a signal 

35 with or without a fixed unknown bias. The method has 

36 also been tested to accurately estimate the very closely 

37 spaced low frequencies. 
38 
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Where ≠  0  is  the  associated  amplitude  of   the 
individual sinusoid 

     > 0 is the frequency of individual sinusoid 

such that       ≠       for 0<a<n+1 and  0<b< n+1 

   is  the  associated  phase  of  the  individual 

sinusoid. 

n is of an unknown value. 

 

Estimating the unknown frequencies of the individual 

sinusoids present in y(t) becomes relatively easier if the 

number of sinusoids present in the y(t) are known. 

Several methods have been developed to estimate the 

unknown frequencies of multiple sinusoids. For an 

unbiased estimation of a single sinusoid, a globally 

convergent scheme was presented in [1] using the lattice- 

based adaptive infinite impulse response (IIR)  notch 

filter in the discrete time domain. This approach was 

extended in [2] for continuous time domain. In [3] the 

concept of nonlinear time scaling is applied to the 

approach presented in [1] to derive the global asymptotic 

convergence of the estimated frequency. However the 

methods presented in [1], [2] and [3] were limited to the 

frequency estimation of only a single sinusoid. A global 

estimation of multiple unknown frequencies was 

presented in [4] and [5], using the concept of adaptive 

filters presented in [6]. However the functionality of the 

approaches presented in [4] and [5] are limited in their 

need for prior knowledge of the number of sinusoids, n, 

present in the signal. This paper presents a new approach 
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3 to accurately estimate all the unknown frequencies 

4 without any prior knowledge of the number of sinusoids 

5 or their associated amplitudes and phases. The proposed 

6 method employs eigenspace analysis for the square 

7 symmetric matrix of the Hankel matrix [7], building 

8 upon the Pisarenko algorithm [8] for the decomposition 

9 of noiseless signal. Equation (2) and (3) represent the 

10 Hankel matrix H and the associated square symmetric 

11 matrix S. The matrix H represents the m samples of the 

12 signal y(t) taken at regular interval of   time and has 

13 the order of L × (m-L+1). 
14 

 

 

the presence of sinusoids as according to Euler’s 

relationship equations [9], the sinusoids can also be 

expressed in the form of complex exponential pairs shown 

in equation (6), (7) and (8). 

 
= +i (6) 

 
= + (7) 

 
= - (8) 

15 

16 
H = [ 

17 

 ( ) 

 ( ) 

 ( ) 

 ( ) 

 (   ) 
 ( ) 

] (2) 

If there is a prior knowledge of the number of sinusoids in 

a signal, the order of Hankel matrix can be  determined 

such  that    the  eigenspace  analysis  will  give  a   correct 

18 (  ) ( ) (   ) 
19 20 

21 
S = H × H`=  [ ] (3) 

22 

23 
24 

25 Where 

26 H is the Hankel matrix of order L × (m-L+1) 

27 H` is the transpose of matrix H 

28 ═ such that 0<u<L+1 and 0<v<L+1 
29 

30 The matrix H forms the basis for frequency estimation of 

31 constituent sinusoids as its order determines the order of 

32 matrix S which is used for the eigenspace analysis and 

33 ultimately leads to frequency estimation. The eigenvalues 

34 and the corresponding eigenvectors of S reflect upon the 

35 correct frequency estimation. Let matrix E represents the 

36 matrix of eigenvalues of S and matrix V represents the 

37 matrix of eigenvectors of S such that first vector of V 

38 corresponds to first eigenvalue in E. 

39 
40 

estimation   of   frequencies   of   the   known   number   of 
sinusoids; otherwise the right order of the Hankel matrix 

cannot be determined and subsequently the correct 

eigenspace analysis using the Pisarenko algorithm cannot 

be performed, resulting in either too many or too few 

complex conjugate pairs in the polynomial roots of the 

eigenvector . Even if the number of sinusoids is  known, 

for closely spaced multiple frequencies, the correct 

estimates of frequencies become difficult. The new 

approach overcomes this limitation and can estimate the 

frequencies for an unknown number of sinusoids present in 

a signal. 
 

2. UNIVERSAL ESTIMATION APPROACH 
 

The new method uses a two way constraint approach to 

correctly estimate the frequency of the unknown sinusoids. 

Both the constraints are derived from the eigenspace 

analysis of the matrix S which is obtained from matrix H 

using the equation (3). The two constraints, developed in 

the new methodology, are the Existence Factor (EF) 

constraint and the Component Factor (CF) constraint. Both 

41 1 0 0  these constraints must be satisfied for correct estimation of 
  the unknown  frequencies and for correct detection of   the 

42 
43 E=  

2 
44  0 



(4) 
number of sinusoids present in the signal. Both constraints 

are  also  linked  together.  The  combination  of  the    two 
  constraints  leads  to  successful  estimation  of    unknown 

45 
0 0 

46 

47 

n  multiple frequencies. 

48 

49 (5) 
50 

V= [ ] 
2.1. First Constraint :: Existence Factor 
(EF) 

51 Where each eigenvalue, corresponds to an  eigenvector 

52 . 
53 
54 

Assuming   that   the   eigenvalues   are   arranged   in   the 
55 

56 ascending order, represent the minimum eigenvalue of 

57 S and represents the corresponding eigenvector. 

58 According to the Pisarenko algorithm, polynomial roots of 
    exist in the form of complex conjugate pairs and reflect 

The problem arises at the point when the number of 

sinusoids, present in the signal y(t), is not known. If the 

exact number of sinusoids is known then the order of 

matrix H can  be  selected  such  that  of  S  will only 

have exactly same number of complex conjugate pairs as 

the number of sinusoids in the signal. But if the number 

of sinusoids present in the signal is not known then the 

right order of matrix H cannot be selected which will 
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1 

2 

3 result in either too many or less number of complex 

4 conjugate pairs for of S, which will result in 

5 inaccurate estimation or false estimation of the 

6 frequencies of constituent sinusoids of the signal. 

7 The new method overcomes this problem by considering 

8 the fact that does provide the estimate of the 

9 frequencies of constituent sinusoids but the new method 

10 also exploits the fact that there exists a relationship 

11 between the actual frequencies of the unknown number 

12 of sinusoids and the order of the matrix S. The order of 

13 matrix S determines the number of eigenvectors of S as 

14 shown in equation 5 that the matrix S of order M × M 

15 has M eigenvectors. The polynomial roots of all these M 

 

 

 

 

 

 

 

 

Where 

 

 

(10) 

 
 (11) 

(            ) (12) 

V is the matrix representing the eigenvectors  of 

S; and 

  is the matrix representing the eigenvalues of S 

and I is the identity matrix. We are interested in 

the non-trivial solution, i.e. for V ≠ 0. 

16 eigenvectors have some complex conjugate pairs 

17 common for all M eigenvectors. These common complex 

18 conjugate pairs in M eigenvectors of S are the complex 

19 exponential pairs of the constituent sinusoids. There is 

20 one pure constant term which may also be common to 

21 polynomial roots of all M eigenvectors and this common 

22 term represents the existence of a fixed bias term along 

23 with the sinusoids. First constraint factor is developed 

24 based on this relationship. For n number of sinusoids 

25 present in a signal and for matrix S of order M × M, the 

26 relationship between the unknown frequencies of n 

27 sinusoids with M can be represented with new existence 

28 factor (EF) as follows: 
29 
30 Existence Factor EF: { 0 > EF ≥ M – (2n +1) } (9) 
31 
32 

This new term is developed based on the fact that each 
33 

sinusoid can be represented as pair of complex 
34 

exponential and each complex exponential corresponds 
35 

to a principal vector in the eigenspace. The addition of 
36 

37 one is to consider the fixed bias in y(t), if present. It 

38 shows that out of M eigenvectors of S, EF number of 

39 eigenvectors will have the some polynomial roots in the 

40 form of conjugate pair that will be common to all EF 

41 number of eigenvectors, hence resulting in the true 

42 frequency estimation from these common conjugate pair 

43 roots. It is also consistent with the concept that out of M 

44 eigenvalues, EF numbers of eigenvalues are of the same 

45 order of the minimum eigenvalue and the vectors 

46 corresponding to all these eigenvalues will have the 

47 polynomial roots that facilitate the frequency estimation 

48 through the common conjugate pairs of polynomial 

49 roots. 
50 

51 
52 

2.2. Second Constraint :: Component 
53 Factor (CF) 
54 

55 The second constraint is called Component Factor (CF) 
56 and is also derived from the eigenspace of S. For the 

57 square matrix S, the eigenvalues of S and the 

58 eigenvectors of S are related as 
59 

This is known as the characteristic determinant of S   and 
|S - EI|= 0 is the characteristic equation [10]. Solution of 

the characteristic equation gives the eigenvalues, , of S 

and these eigenvalues satisfy following two relationships 

[10]: 

i. The trace of matrix S is basically the sum of the 

diagonal values of the matrix S and is equal to the 

sum of the eigenvalues. 

ii. The determinant of matrix S is equal to the product of 

the eigenvalues. 

The first relationship is used to develop the second 

constraint, CF, that accurately determines the number of 

principal components presents in the signal’s eigenspace. 

The trace of the S is related to its eigenvalues . Starting 

from the maximum eigenvalue of S, the number of 

eigenvalues that sum up to the trace of S represent the 

number of significant components present in the signal 

y(t). Here we have performed the equality test between the 

trace of S and the sum of eigenvalues of S up to thirteen 

decimal places. Let Tr(S) represent the trace of S, then the 

CF can be represented as: 

CF = [Max (k) {∑ (  ) } (13) 

Each and every sinusoid will have two significant complex 
exponential components present in the signal whereas the 

fixed bias, if present, will have a single principal 

component present in the signal. Hence, the odd value of 

CF will show the presence of a fixed bias whereas  the 

even value of CF will reflect the absence of a fixed bias. 

 
 

2.3. Relationship Between Two Constraints 

 
As both the constraints are developed from the eigenspace 

of S, so there exists a relationship between the two 

constraints. The EF value is related to the eigenvector in 

the eigenspace of S and CF is related to the eigenvalues in 

the eigenspace of S. Each eigenvalue in the eigenspace 

corresponds to an eigenvector and as the CF gives the 

number of eigenvalues that satisfy the  defined criteria, 

this CF also gives the number of eigenvectors that will 

not  satisfy  the  criteria  defined  under  EF,  Hence,    the 
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1 

2 

3 relationship between the EF and CF can be written as 

4 shown in equation (14) by modifying the equation (9). 

5 

6 Existence Factor EF: { 0 > EF ≥ M – (CF+1) } (14) 
7 

8 The comparison between the equation (9) and equation 

9 (14) gives an impression that value of CF is same as 2n 
10 but it is only with the case when there is no fixed bias 

11 present in the signal. For the signal that has fixed bias 

12 present in the signal, the value of CF will be 2n plus one 
13 for the fixed bias presence. 

14 

15 

16 2.4. Frequency Estimation Scheme 

17 The unknown frequencies of sinusoids within a signal 

19 are estimated using the constraints EF and CF through 

20 following steps: 
21 

22 i. Formation of matrix H from the signal’s samples. 

23 ii. Calculation of S. 

24 iii. Finding the matrix E and V of S. 

25 iv. Calculating the polynomial roots of all the vectors in 

26 V 

27 v. Estimating the frequencies , from the polynomial 

28 roots of V by taking the imaginary part of the natural 

29 logarithm of the polynomial roots. 

30 vi.  Taking the frequencies calculated, with unit 

31 magnitude of the polynomial roots, for V1 as the 

32 reference frequencies . 

33 vii. The presence of is counted in , and if the 

34 count satisfies the first constraint EF then the 

35 frequencies in that have satisfied the EF 

36 constraint are the estimated frequencies of the 

37 constituent sinusoids of signal y(t). 

38 viii. The constraint condition for CF is evaluated and the 

39 count of eigenvalues that have satisfied the constraint 

40 condition is the CF value. 

41 ix. The relationship equation (14) is tested for evaluated 

42 values of EF and CF. If the equation (14) is satisfied 

43 then the frequencies found under step vi are the true 

44 frequencies of the sinusoids present in the signal y(t). 

45 x. If any of the constraints is not satisfied or test for 

46 equation (14) is not satisfied then the procedure is 

47 repeated with larger number of samples of signal y(t) 

48 to from higher order matrix H. 

50 
51 

52 3. SIMULATION AND RESULTS :: 

53 PERFORMANCE EVALUATION 

54 Multiple simulations have been carried out to check the 

55 performance of the new method for estimating the 

56 unknown frequencies of unknown constituent sinusoids 

 
 

for multiple signals. The simulations have been carried 

out with multiple signals and each signal has been 

represented with constituent sinusoids of highly varying 

features like high to low values of frequencies and 

amplitudes, very closely spaced low frequencies, presence 

and absence of fixed bias and varying phases of 

constituent sinusoids. 

 

NB: All the estimated frequencies have been rounded  off 

up to six decimal places. Hence the error, , for estimated 

frequencies is less than 10
-6 

radians. 

 

3.1. Estimating Single Frequency 

Consider a signal comprising of single sinusoid as 

shown below 

 (  )      (         (       ) 
Table 1 presents the parameters such as amplitude (a), 
frequency (ω) and phase (θ) of the test signal 1 shown in 

Fig.1, 

Table 1 Parameters of Test Signal 1 

 

 

 

 

Figure 1 Test Signal 1 

 

Table 2 below shows the performance of  the new 

method to estimate the constituent frequencies of test 

signal 1 with 10 samples taken from the  test  signal 1 

with sampling time of 10ms. 
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1 

2 

3 

4 
5 

6 Table 2 : Frequency Estimation for Test Signal 1 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 
20 3.2. Estimating Two Frequencies 
21 

22 Consider a signal comprising of two sinusoids as shown 

23 below 
24 

25 (  )      (         (        ) +           (                     ) 
26 
27 

28 Table 3 presents the parameters such as amplitude (a), 

29 frequency (ω) and phase (θ) of the test signal 2 shown in 

30 Fig.2, 

31 Table 3: Parameters of Test Signal 2 
32 

33 Figure 2 Test Signal 2 
34 

35 

36 Table 4 below shows the performance of the new method 

37 to estimate the constituent frequencies of test signal 2 

38 with 40 samples taken from the test signal 1 with 

39 sampling time of 10ms. 

40 

41 

42 
43 Table 4 : Frequency Estimation for Test Signal 2 
44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/


also correctly found the total number of sinusoids in the 

test signals. The technique is an efficient blind sinusoidal 

A   qualitative   and   quantitative   comparison   of   our 

proposed scheme has been performed with Multi Signal 

58 

59 

60 

61 

62 

63 

64 

65 

5 

 

14 

22 

 

 

 

 

1 

2 

3 3.3. Estimating Multiple Closely Spaced 

4 Low Frequency with High Variation in The 

5 Amplitude of the Constituent Sinusoids and 

6 In the Presence of DC Bias: 

7 The final test has been carried out to test the performance 

8 of the new method for the estimation of low frequencies 

9 of multiple closely spaced sinusoids with high amplitude 

10 variation among the sinusoid along with the presence of 

11 fixed bias. Test signal 3 is shown below: 12 

13 
(  )      (             (                   )          (         

15 )                   (                       )   
16 (                          )   

17 (           )                 (         )      
18 
19 Table 5 presents the parameters such as amplitude (a), 
20 frequency (ω) and phase (θ) of the test signal 4 shown in 

21 Fig.3, 

23 

24 Table 5: Parameters of Test Signal 3 
25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

 

 

 

 

Figure 3 Test Signal 3 

 
Table 6 below shows the performance of the new method 

to estimate the constituent frequencies of test  signal 8 

with 3000 samples taken from the test signal 3 with 

sampling time of 10ms. Table 6 also shows that the new 

approach has accurately estimated the closely spaced 

frequencies of test signal 8 in the presence of a fixed bias 

along with the high variations among the amplitudes of 

the constituent sinusoids. 

The odd value of CF also reflects the presence of a fixed 

bias in the signal which is also reflected in the detected 

estimated frequencies with the frequency of zero. 

37 
Table 6: Frequency Estimation for Test Signal 3 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 detection and estimation technique that accurately 
55 The new method is applied to all the simulated test 
56 signals and the method has efficiently estimated the 

57 unknown frequencies of constituent sinusoids and has 

estimates the sinusoidal components  without any    prior 
knowledge regarding the sinusoidal components. 

http://www.pdfxviewer.com/
http://www.pdfxviewer.com/


59 

60 

61 

62 

63 

64 

65 

7 

 

 

 

 

 

1 

2 

3 Classification (MUSIC) algorithm. On qualitative 

4 comparison with MUSIC algorithm, our proposed 

5 scheme has greater advantage as our proposed scheme 

6 does not need any prior knowledge of the number of 

7 frequency components present with in a signal whereas 

8 MUSIC algorithm requires the exact number of 

9 frequency components that need to be discovered. 

10 Another drawback of MUSIC algorithm is that it detects 

11 frequency components which are not present within the 

12 signal and this will occur if MUSIC algorithm is not 

13 provided with the true number of frequency components 

14 present with in the signal. 

15 On quantitative comparison with MUSIC algorithm, our 

16 proposed scheme performs better than the MUSIC 

17 algorithm. Our proposed scheme detects the exact 

18 number of frequency components present with in the 

19 signal and error in frequency estimation is effectively 

20 lesser than the 
21 

22 

 

 

 

error of MUSIC algorithm. Table 7 presents the 

performance comparison of our proposed scheme with 

MUSIC algorithm for single frequency components. The 

Table 7 reflects the higher performance of our proposed 

scheme as the error of estimation for our proposed 

scheme is lesser than the error of estimation of MUSIC 

algorithm. Table 8 and Table 9 presents the performance 

comparison of our proposed scheme with MUSIC 

algorithm for multiple frequency components reflecting 

the higher performance of our proposed scheme as the 

error of estimation for our proposed scheme  is lesser 

than the error of estimation of MUSIC algorithm. 

23 Table 7. Performance Comparison with MUSIC for n = 1 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 Table 8. Performance Comparison with MUSIC for n = 2 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

Estimated Number of Sinusoids in the Signal n =1  {10sin(2πf0t)} 
Actual Frequency Estimated Frequency Estimation Error 

Test 

Case 

Frequency Under Each Test MUSIC Proposed 

Scheme 

MUSIC Proposed Scheme 

1 f0 10 9.999999242 10 ≤ 10-6
 ≤ 10-10 

2 f0 23 29.99999978 23 ≤ 10-6
 ≤ 10-10 

3 f0 35 35.00000025 35 ≤  10-65 ≤  10-109 

 

Estimated Number of Sinusoids in the Signal n =2  {10sin(2πf0t) + 10sin(2πf1t) } 
Actual Frequency Estimated Frequency Estimation Error 

Test 

Case 

Frequency Under Each Test MUSIC Proposed 

Scheme 

MUSIC Proposed Scheme 

1 f0 5 5.000000041 5 ≤ 10-7
 ≤ 10-10 

f1 15 14.99999991 15 ≤ 10-7
 ≤ 10-10 

2 f0 37 36.999999913 37 ≤ 10-7
 ≤ 10-10 

f1 17 16.999999716 17 ≤ 10-7
 ≤ 10-10 

3 f0 21 21.000000015 21 ≤ 10-7
 ≤ 10-10 

f1 49 48.999999825 49 ≤ 10-6
 ≤ 10-10 
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1 

2 

3 

4 Table 9. Performance Comparison with MUSIC for n = 4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 Transactions on , vol.47, no.8, pp. 1324- 1328, Aug 
28 4. CONCLUSION 
29 

30 The new method has been developed using the Hankel 

31 matrix and Pisarenko harmonic decomposition that 

32 accurately estimates the unknown frequencies of 

33 unknown number of sinusoids presents in a signal based 

34 on the new constraints EF and CF. The method also 

35 gives the exact number of sinusoid present in the signal. 

36 The method has also correctly estimated very closely 

37 spaced frequencies. The newly developed approach can 

38 be used to test the performance of noise filters by 

39 applying the method to the output of the filter. 
40 

41 

42 

43 
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MUSIC Proposed Scheme 

1 f0 10 10.0000000086 10 ≤ 10-8
 ≤ 10-10 

f1 20 20.0000000131 20 ≤ 10-7
 ≤ 10-10 

f2 30 29.9999999556 30 ≤ 10-7
 ≤ 10-10 

f3 40 39.9999999289 40 ≤ 10-7
 ≤ 10-10 

2 f0 3 2.99999993663 3 ≤ 10-7
 ≤ 10-10 

f1 15 14.9999997807 15 ≤ 10-6
 ≤ 10-10 

f3 37 36.9999998448 37 ≤ 10-6
 ≤ 10-10 

f4 49 49.0000001909 49 ≤ 10-6
 ≤ 10-10 
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