11 research outputs found

    Targeting Ref-1/APE1 Pathway Inhibition in Pancreatic Cancer Using APX3330 for Clinical Trials

    Get PDF
    poster abstractPancreatic ductal adenocarcinoma is the 4th leading cause of cancer-related mortality in the US. Most patients present with advanced disease and ~95% die within five years, most surviving under six months. Targeted therapies offer modest improvement in survival, albeit at an increase in side effects and unwanted toxicities. Ref-1 regulates transcription factors involved in pancreatic cancer cell survival signaling due to its redox-coactivator activity, such as HIF-1α, NFκB, NRF2 and STAT3. High expression levels of Ref-1 indicate decreased survival in PDAC and other cancers. APX3330, a specific Ref-1 inhibitor, has been shown in multiple in vitro and in vivo pancreatic cancer models to be effective in reducing tumor growth and metastases. The safety and dose administration of APX3330 have been previously established, including toxicology, phase I, and phase II clinical evaluation in non-cancer patients in Japan (Eisai). We have partnered with ApeX Therapeutics to develop APX3330 for cancer treatment (phase I trial anticipated early 2016). We studied interactions of Ref-1, APX3330, convergent pathways; i.e. HIF-1α and STAT3, and downstream targets like CAIX. We performed in vivo studies demonstrating single and combination effects of APX3330 with Gemcitabine (Gem) showing significantly decreased tumor volume in the combination treatments. We also tested single and combination studies of APX3330 in an ex vivo 3-D tumor-stroma model system using patient derived tumor cells along with patient derived cancer-associated fibroblasts. We used the CAIX inhibitor SLC-0111 and JAK2 inhibitor, Ruxolitinib; both in clinical trials. In our system, APX3330 decreases the tumor area and intensity in a dose-dependent manner. The combination of APX3330 with Gem demonstrated an additive enhancement effect in the tumor, and APX3330 with SLC-0111/Ruxolitinib enhanced tumor killing. These data demonstrate APX3330 single agent efficacy in our 3D patient model and enhanced tumor killing when pathways regulated by Ref-1, HIF-1 and STAT3 are blocked

    Blocking HIF signaling via novel inhibitors of CA9 and APE1/Ref-1 dramatically affects pancreatic cancer cell survival

    Get PDF
    Abstract Pancreatic ductal adenocarcinoma (PDAC) has reactive stroma that promotes tumor signaling, fibrosis, inflammation, and hypoxia, which activates HIF-1α to increase tumor cell metastasis and therapeutic resistance. Carbonic anhydrase IX (CA9) stabilizes intracellular pH following induction by HIF-1α. Redox effector factor-1 (APE1/Ref-1) is a multifunctional protein with redox signaling activity that converts certain oxidized transcription factors to a reduced state, enabling them to upregulate tumor-promoting genes. Our studies evaluate PDAC hypoxia responses and APE1/Ref-1 redox signaling contributions to HIF-1α-mediated CA9 transcription. Our previous studies implicated this pathway in PDAC cell survival under hypoxia. We expand those studies, comparing drug responses using patient-derived PDAC cells displaying differential hypoxic responses in 3D spheroid tumor-stroma models to characterize second generation APE1/Ref-1 redox signaling and CA9 inhibitors. Our data demonstrates that HIF-1α-mediated CA9 induction differs between patient-derived PDAC cells and that APE1/Ref-1 redox inhibition attenuates this induction by decreasing hypoxia-induced HIF-1 DNA binding. Dual-targeting of APE1/Ref-1 and CA9 in 3D spheroids demonstrated that this combination effectively kills PDAC tumor cells displaying drastically different levels of CA9. New APE1/Ref-1 and CA9 inhibitors were significantly more potent alone and in combination, highlighting the potential of combination therapy targeting the APE1-Ref-1 signaling axis with significant clinical potential

    Apurinic/Apyrimidinic Endonuclease/Redox Factor-1 (APE1/Ref-1) redox function negatively regulates NRF2

    Get PDF
    Apurinic/apyrimidinic endonuclease/redox factor-1 (APE1/Ref-1) (henceforth referred to as Ref-1) is a multifunctional protein that in addition to its base excision DNA repair activity exerts redox control of multiple transcription factors, including nuclear factor κ-light chain enhancer of activated B cells (NF-κB), STAT3, activator protein-1 (AP-1), hypoxia-inducible factor-1 (HIF-1), and tumor protein 53 (p53). In recent years, Ref-1 has emerged as a promising therapeutic target in cancer, particularly in pancreatic ductal carcinoma. Although a significant amount of research has centered on Ref-1, no wide-ranging approach had been performed on the effects of Ref-1 inhibition and transcription factor activity perturbation. Starting with a broader approach, we identified a previously unsuspected effect on the nuclear factor erythroid-related factor 2 (NRF2), a critical regulator of cellular defenses against oxidative stress. Based on genetic and small molecule inhibitor-based methodologies, we demonstrated that repression of Ref-1 potently activates NRF2 and its downstream targets in a dose-dependent fashion, and that the redox, rather than the DNA repair function of Ref-1 is critical for this effect. Intriguingly, our results also indicate that this pathway does not involve reactive oxygen species. The link between Ref-1 and NRF2 appears to be present in all cells tested in vitro, noncancerous and cancerous, including patient-derived tumor samples. In particular, we focused on understanding the implications of the novel interaction between these two pathways in primary pancreatic ductal adenocarcinoma tumor cells and provide the first evidence that this mechanism has implications for overcoming the resistance against experimental drugs targeting Ref-1 activity, with clear translational implications

    Regulation of HIF1α under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual Targeting in Patient-Derived 3D Pancreatic Cancer Models

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related mortality in the United States. Aggressive treatment regimens have not changed the disease course, and the median survival has just recently reached a year. Several mechanisms are proposed to play a role in PDAC therapeutic resistance, including hypoxia, which creates a more aggressive phenotype with increased metastatic potential and impaired therapeutic efficacy. AP Endonuclease-1/Redox Effector Factor 1 (APE1/Ref-1) is a multifunctional protein possessing a DNA repair function in base excision repair and the ability to reduce oxidized transcription factors, enabling them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors involved in survival mechanisms, tumor growth, and hypoxia signaling. Here, we explore the mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox signaling activity, which regulates the transcriptional activation of hypoxia-inducible factor 1 alpha (HIF1α). Carbonic anhydrase IX (CA9) is regulated by HIF1α and functions as a part of the cellular response to hypoxia to regulate intracellular pH, thereby promoting cell survival. We hypothesized that modulating APE1/Ref-1 function will block activation of downstream transcription factors, STAT3 and HIF1α, interfering with the hypoxia-induced gene expression. We demonstrate APE1/Ref-1 inhibition in patient-derived and established PDAC cells results in decreased HIF1α–mediated induction of CA9. Furthermore, an ex vivo three-dimensional tumor coculture model demonstrates dramatic enhancement of APE1/Ref-1–induced cell killing upon dual targeting of APE1/Ref-1 and CA9. Both APE1/Ref-1 and CA9 are under clinical development; therefore, these studies have the potential to direct novel PDAC therapeutic treatment

    Mutation in erythroid specific transcription factor KLF1 causes Hereditary Spherocytosis in the Nan hemolytic anemia mouse model

    Get PDF
    KLF1 regulates definitive erythropoiesis of red blood cells by facilitating transcription through high affinity binding to CACCC elements within its erythroid specific target genes including those encoding erythrocyte membrane skeleton (EMS) proteins. Deficiencies of EMS proteins in humans lead to the hemolytic anemia Hereditary Spherocytosis (HS) which includes a subpopulation with no known genetic defect. Here we report that a mutation, E339D, in the second zinc finger domain of KLF1 is responsible for HS in the mouse model Nan. The causative nature of this mutation was verified with an allelic test cross between Nan/+ and heterozygous Klf1(+/-) knockout mice. Homology modeling predicted Nan KLF1 binds CACCC elements more tightly, suggesting that Nan KLF1 is a competitive inhibitor of wild-type KLF1. This is the first association of a KLF1 mutation with a disease state in adult mammals and also presents the possibility of being another causative gene for HS in humans

    Regulation of HIF1 under Hypoxia by APE1/Ref-1 Impacts CA9 Expression: Dual-Targeting in Patient-Derived 3D Pancreatic Cancer Models

    Get PDF
    poster abstractAbstract Half of all patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) die within a year despite extensive surgery and/or a highly aggressive chemotherapy regimen. Several mechanisms are proposed to play a role in PDAC therapeutic resistance, including reactive stroma and hypoxia. Hypoxia signaling creates a more aggressive phenotype with increased metastatic potential and impaired therapeutic efficacy. Carbonic anhydrase IX (CA9) functions as part of the cellular hypoxia response to regulate intracellular pH, promoting cell survival. Apurinic/Apyrimidinic Endonuclease-1-Reduction/oxidation Effector Factor 1 (APE1/Ref-1) is a multi-functional protein with two major activities: an endonuclease function in DNA base excision repair and a redox signaling function that reduces oxidized transcription factors, enabling them to bind to their DNA target sequences. APE1/Ref-1 regulates several transcription factors involved in survival mechanisms, tumor growth, and hypoxia signaling. We explored the mechanisms underlying PDAC cell responses to hypoxia and modulation of APE1/Ref-1 redox signaling control of hypoxia inducible factor 1 alpha (HIF1), a critical factor in hypoxiainduced CA9 transcription. We hypothesized that obstructing the HIF-CA9 axis at two points via APE1/Ref-1 inhibition and CA9 inhibition will result in enhanced PDAC cell killing under hypoxic conditions. Methods: We performed qRT-PCR and Western Blots to confirm changes in CA9 expression in PDAC cells following APE1/Ref-1 inhibition and hypoxia exposure. Proliferation assays were used to assess cell killing following inhibition of APE1/Ref-1 and CA9 under hypoxia. Ex vivo 3-Dimensional co-culture models including both tumor and CAFs were used to examine whether we could enhance the efficacy of APE1/Ref-1 and/or CA9 inhibition with a dual-targeting approach to kill tumor spheroids. Results: HIF1-mediated induction of CA9 is significantly diminished in PDAC cells following APE1/Ref-1 redox inhibition. Additionally, dual-targeting of APE1/Ref-1 and CA9 reduces PDAC tumor cell growth under hypoxic conditions and in 3D tumor co-cultures

    Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions

    No full text
    © 2020, The Author(s). The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts (identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the research community. As a proof of principle for their utility, we apply a colocalization analysis to identify genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975)

    Gene expression imputation across multiple brain regions provides insights into schizophrenia risk

    Get PDF
    Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression.</p
    corecore