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Gene expression imputation across multiple brain regions provides insights into 

schizophrenia risk. 
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Abstract 

Transcriptomic imputation approaches combine eQTL reference panels with large-scale 

genotype data in order to test associations between disease and gene expression. These genic 

associations could elucidate signals in complex GWAS loci and may disentangle the role of 

different tissues in disease development. We use the largest eQTL reference panel for the dorso-

lateral pre-frontal cortex (DLPFC) to create a set of gene expression predictors, and demonstrate 

their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases 

and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We 

identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 

non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 

significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric 

disorder pathways. We investigated developmental expression patterns among the 67 non-MHC 

genes, and identified specific groups of pre- and post-natal expression.  
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Introduction  

Genome-wide association studies (GWAS) have yielded large lists of disease-associated loci. 

Progress in identifying the causal variants driving these associations, particularly for complex 

psychiatric disorders such as schizophrenia, has lagged much further behind. Interpreting 

associated variants and loci is therefore vital to understanding how genetic variation contributes 

to disease pathology. Expression Quantitative Trait Loci (eQTLs), which are responsible for a 

substantial proportion of gene expression variance, have been posited as a link between 

associated loci and disease susceptibility1–5, and have yielded results for a host of complex 

traits6–9. Consequently, numerous methods to identify and interpret co-localization of eQTLs and 

GWAS loci have been developed10–13. However, these methods require simplifying assumptions 

about genetic architecture (i.e., one causal variant per GWAS locus) and/or linkage 

disequilibrium, may be underpowered or overly conservative, especially in the presence of allelic 

heterogeneity, and have not yet yielded substantial insights into disease biology.  

 

Biologically relevant transcriptomic information can be extracted through detailed RNA-

sequencing, as recently  described by the CommonMind Consortium14 (CMC) in a large cohort 

of genotyped individuals with schizophrenia and bipolar disorder14. These analyses however are 

underpowered to detect statistically significant differential expression of genes mapping at 

schizophrenia (SCZ) risk loci, due to the small effects predicted by GWAS, combined with the 

difficulty of obtaining adequate sample sizes of neurological tissues14, and do not necessarily 

identify all risk variation in GWAS loci. Transcriptomic imputation is an alternative approach 

that leverages large eQTL reference panels to bridge the gap between large-scale genotyping 

studies and biologically useful transcriptome studies15,16. Transcriptomic imputation approaches 

codify the relationships between genotype and gene expression in matched panels of individuals, 

then impute the genetic component of the transcriptome into large-scale genotype-only datasets, 

such as case-control GWAS cohorts, enabling investigation of disease-associated gene 

expression changes. This will allow us to study genes with modest effect sizes, likely 

representing a large proportion of genomic risk for psychiatric disorders14,17.  

 

The large collection of dorso-lateral pre-frontal cortex (DLPFC) gene expression data collected 

by the CMC 14 affords us a unique opportunity to study and codify relationships between 
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genotype and gene expression. Here, we present a novel set of gene expression predictor models, 

built using CMC DLPFC data14. We compare different regression approaches to building these 

models (including elastic net15, Bayesian sparse linear mixed models and ridge regression16, and 

using max eQTLs), and benchmark performance of these predictors against existing GTEx 

prediction models. We applied our CMC DLPFC predictors and 12 GTEx-derived neurological 

prediction models to predict gene expression in schizophrenia GWAS data, obtained through 

collaboration with the Psychiatric Genomics Consortium (PGC) schizophrenia working group, 

the “CLOZUK2” cohort, and the iPSYCH-GEMS schizophrenia working group. We identified 

413 genome-wide significant genic associations with schizophrenia in our PGC+CLOZUK2 

sample, constituting 67 independent associations outside the MHC region. We demonstrated the 

relevance of these associations to schizophrenia etiopathology using gene set enrichment 

analysis, and by examining the effects of manipulation of these genes in mouse models. Finally, 

we investigated spatio-temporal expression of these genes using a developmental transcriptome 

dataset, and identified distinct spatio-temporal patterns of expression across our associated 

genes.  
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Results 

Prediction Models based on CMC DLPFC expression 

Using matched CMC genotype and gene expression data, we developed DLPFC genetically 

regulated gene expression (GREX) predictor models. We systematically compared four 

approaches to building predictors15,16 within a cross-validation framework. Elastic net regression 

had a higher distribution of cross-validation R2 (RCV
2) and higher mean RCV

2 values 

(Supplementary Figure 1, 2a) than all other methods. We therefore used elastic net regression to 

build our prediction models. We compared prediction models created using elastic net regression 

on SVA-corrected and uncorrected data14. The distribution of Rcv
2 values for the SVA-based 

models was significantly higher than for the un-corrected data14,18 (ks-test; p < 2.2 × 10-16; 

Supplementary figure 1b,c). In total, 10,929 genes were predicted with elastic net cross-

validation Rcv
2 > 0.01 in the SVA-corrected data and were included in the final predictor 

database (mean Rcv
2  = 0.076).  

 

To test the predictive accuracy of the CMC-derived DLPFC models, and to benchmark this 

against existing GTEx-derived prediction models, GREX was calculated in an independent 

DLPFC RNA-sequencing dataset (the Religious Orders Study Memory and Ageing Project, 

ROSMAP19,20). We compared predicted GREX to measured ROSMAP gene expression for each 

gene (Replication R2, or RR
2) for the CMC-derived DLPFC models and twelve GTEx-derived 

brain tissue models15,21 (Figure 1, Supplementary Figure 2b). CMC-derived DLPFC models had 

higher average RR
2 values (Mean RR

2 = 0.056), more genes with RR
2 > 0.01, and significantly 

higher overall distributions of RR
2 values than any of the twelve GTEx models (ks-test, p < 2.2 × 

10-16 across all analyses; Figure 1). Median RR
2 values were significantly correlated with sample 

size of the original tissue set (rho = 0.92, p = 7.2 × 10-6), the number of genes in the prediction 

model (rho = 0.9, p = 2.6 × 10-5), and the number of significant ‘eGenes’ in each tissue type (rho 

= 0.95, p = 5.5 × 10-7; Figure 1c). Notably, these correlations persist after removing obvious 

outliers (Figure 1c).  

 

To estimate trans-ancestral prediction accuracy, GREX was calculated for 162 African-American 

individuals and 280 European individuals from the NIMH Human Brain Collection Core 

(HBCC) dataset (Supplementary Figure 2c). RR
2 values were higher on average in Europeans 
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than African-Americans (average RR_EUR
2 = 0.048, RR_AA

2 = 0.040), but were significantly 

correlated between African-Americans and Europeans (rho = 0.78, p < 2.2 × 10-16, Pearson test; 

Supplementary Figure 3).  

 

Application of Transcriptomic Imputation to Schizophrenia 

We used CMC DLPFC and 12 GTEx–derived brain tissue prediction models to impute GREX of 

19,661 unique genes in cases and controls from the PGC-SCZ GWAS study22. Predicted 

expression levels were tested for association with schizophrenia. Additionally, we applied CMC 

and GTEx-derived prediction models to summary statistics from 11 PGC cohorts (for which raw 

genotypes were unavailable) and the CLOZUK2 cohort. Meta-analysis was carried out across all 

PGC-SCZ and CLOZUK2 cohorts using an inverse-variance based approach in METAL. Our 

final analysis included 40,299 cases and 65,264 controls (Supplementary Figure 4a).  

 

We identified 413 genome-wide significant associations, representing 256 genes in 13 tissues 

(Figure 2a). The largest number of associations was detected in the CMC-DLPFC GREX data 

(Figure 2c; 49 genes outside the MHC, 69 genes overall). We sought replication of our CMC 

DLPFC SCZ-associations in an independent dataset of 4,133 cases and 24,788 controls in 

collaboration with the iPSYCH-GEMS SCZ working group (Supplementary Figure 4b). We 

tested for replication of all Bonferroni-significant genes identified in our CMC-DLPFC analysis. 

Twelve out of 100 genes replicated in the iPSYCH-GEMS data, significantly more than expected 

by chance (binomial test, p = 0.0043). Notably, 11/12 replicating loci are previous GWAS loci, 

compared to 38/88 non-replicating loci. There was significant concordance between our 

discovery (PGC+CLOZUK2) and replication (iPSYCH-GEMS) samples; 72/100 genes have 

consistent direction of effect, including all 12 replicating genes (binomial p = 1.258 × 10-5), and 

we found significant correlation of effect sizes (p = 1.784 × 10-4; rho = 0.036) and –log10 p-

values (p = 1.073 × 10-5; rho = 0.043). 

 

To identify the top independent associations within genomic regions, which include multiple 

associations for a single gene across tissues, or multiple nearby genes, we partitioned genic 

associations into 58 groups defined based on genomic proximity and applied stepwise forward 

conditional analysis within each group (Supplementary Table 1). In total, 67 non-MHC genes 
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remained genome-wide significant after conditioning (Table 1; Figure 2a,b). The largest signal 

was identified in the CMC-DLPFC GREX data (24 genes; Figure 2c), followed by the Putamen 

(7 genes). Nineteen out of 67 genes did not lie within 1 Mb of a previously genome-wide 

significant GWAS locus22 (shown in bold, Table 1); of these, 5/19 genes were within 1 Mb of a 

locus which approached genome-wide significance (p < 5 × 10-07). The remaining 14 genes all 

fall within nominally significant PGC-SCZ GWAS loci (p < 8 × 10-04), but did not reach 

genome-wide significance.  

 

We compared our CMC-DLPFC prediXcan associations statistics to COLOC results from our 

recent study23,24. Briefly, COLOC tests for co-localization between GWAS loci and eQTL 

architecture. We calculated COLOC probabilities of no-colocalization (“PP3”) and 

colocalization (“PP4”); we consider PP4 > 0.5 to be significant evidence of colocalization25. We 

found a significant correlation between prediXcan p-values and PP4 values; rho = 0.35, p = 2.3 × 

10-311. Thirty-one genes had ‘strong’ evidence of co-localization between GWAS loci and lead or 

conditional eQTLs23; of these, 21 were genome-wide significant in our prediXcan analysis 

(significantly more than expected by chance, binomial p-value = 2.11 × 10-104), and all had p < 1 

× 10-4. We identified 40 GWAS loci with no significant prediXcan associations; all of these loci 

also had strong evidence for no co-localization in our COLOC analysis (median PP3 = 0.936, 

median PP4 = 0.0027). 

 

Implicated genes highlight SCZ-associated molecular pathways  

We tested for overlap between our non-MHC SCZ-associated genes and 8,657 genesets 

comprising 1) hypothesis-driven pathways and 2) general molecular database pathways. We 

corrected for multiple testing using the Benjamini-Hochberg false discovery rate (FDR) 

correction26.  

 

We identified three significantly associated pathways in our hypothesis-driven analysis (Table 

2). Targets of the fragile-X mental retardation protein formed the most enriched pathway 

(FMRP; p = 1.96 × 10-8). Loss of FMRP inhibits synaptic function, is comorbid with autism 

spectrum disorder, and causes intellectual disability, as well as psychiatric symptoms including 

anxiety, hyperactivity and social deficits27. Enrichment of this large group of genes has been 
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observed frequently in studies of schizophrenia28,29 and autism27,30. There was a significant 

enrichment among our SCZ-associated genes and genes that have been shown to be intolerant to 

loss-of-function mutations31 (p = 5.86 × 10-5) as well as with copy number variants (CNVs) 

associated with bipolar disorder32 (p = 7.92 × 10-8), in line with a recent GWAS study of the 

same individuals29. 

 

Next, we performed an agnostic search for overlap between our schizophrenia-associated genes 

and ~ 8,500 molecular pathways collated from large, publicly available databases. Thirty-three 

pathways were significantly enriched after FDR correction (Table 2, Suppl. Table 2), including a 

number of pathways with some prior literature in psychiatric disease. We identified an 

enrichment with porphyrin metabolism (p = 1.03 × 10-4). Deficiencies in porphyrin metabolism 

lead to “Porphyria”, an adult-onset metabolic disorder with a host of associated psychiatric 

symptoms, in particular episodes of violence and psychosis33–38. Five pathways potentially 

related to porphyrin metabolism, regarding abnormal iron level in the spleen, liver and kidney 

are also significantly enriched, including 2/5 of the most highly enriched pathways (p < 2.0 × 10-

4). The PANTHER and REACTOME pathways for Heme biosynthesis and the GO pathway for 

protoporphyrinogen IX metabolic process, which are implicated in the development of porphyric 

disorders, are also highly enriched (p = 2.2 × 10-4, 2.6 × 10-4, 4.1 × 10-4), although do not pass 

FDR-correction.   

 

Hexosaminidase activity was enriched (p = 3.47 × 10-5) in our results; this enrichment is not 

driven by a single highly-associated gene; rather, every single gene in the HEX-A pathway is 

nominally significant in the SCZ association analysis (Supplementary Table 2). Deficiency of 

hexosaminidase A (HEX-A) results in serious neurological and mental problems, most 

commonly presenting in infants as “Tay-Sachs” disease39. Adult-onset HEX-A deficiency 

presents with neurological and psychiatric symptoms, notably including onset of psychosis and 

schizophrenia40. Five pathways corresponding to Ras- and Rab- signaling, protein regulation and 

GTPase activity were enriched (p < 6 × 10-5). These pathways have a crucial role in neuron cell 

differentiation41 and migration42, and have been implicated in the development of schizophrenia 

and autism43–46. We also find significant enrichment with protein phosphatase type 2A regulator 

activity (p = 5.24 × 10-5), which was associated with major depressive disorder (MDD) and 
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across MDD, bipolar disorder (BPD) and SCZ in the same large integrative analysis47, and has 

been implicated in antidepressant response and serotonergic neurotransmission48.  

 

GREX associations are consistent with functional validation 

To test the functional impact of our SCZ-associated predicted gene expression changes (GREX), 

we performed two in-silico analyses. First, we compared differentially expressed genes in the 

Fromer et al. CMC analysis to DLPFC prediXcan results; 76/460 are nominally significant in the 

DLPFC prediXcan analysis, significantly more than would be expected by chance (binomial test, 

p = 8.75 × 10-20). In particular, the Fromer et al. analysis highlighted six loci where expression 

levels of a single gene putatively affected schizophrenia risk. All six of these genes are 

nominally significant in our DLPFC analysis, and two (CLCN3 and FURIN) reach genome-wide 

significance. In the conditional analysis across all brain regions, one additional gene (SNX19) 

reaches genome-wide significance. The direction of effect for all six genes matches the direction 

of gene expression changes observed in the original CMC paper, indicating that gene expression 

estimated in the imputed transcriptome reflects measured expression levels in brains of 

individuals with schizophrenia. Further, this observation is consistent with a model where the 

differential expression signature observed in CMC is caused by genetics rather than 

environment.  

 

To understand the impact of altered expression of our 67 SCZ-associated genes, we performed 

an in-silico analysis of mouse mutants, by collating large, publicly available mouse databases49–

52. We identified mutant mouse lines lacking expression of 37/67 of our SCZ-associated genes, 

and obtained 5,333 phenotypic data points relating to these lines, including 1,170 related to 

behavioral, neurological or craniofacial phenotypes. Twenty-five out of 37 genes were associated 

with at least one behavioral, neurological or related phenotype (Supplementary Table 3).  

 

We carried out two tests to assess the rate of phenotypic abnormalities in SCZ-associated mouse 

lines. First, we compared the proportion of SCZ-gene lines with phenotypic abnormalities to the 

‘baseline’ proportion across all mouse lines for which we had available data. SCZ-associated 

lines were significantly more likely to display any phenotype (paired t-test, p = 0.009647). Next, 

we repeated this analysis for genes identified in S-PrediXcan analyses of 66 publicly available 
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GWAS datasets. SCZ mouse lines had higher levels of nervous system (40.5% vs. 37.6%), 

behavioral (35.1% vs. 32.0%), and eye/vision phenotypes (29.7% vs. 17.0%) compared to these 

‘baseline’ GWAS comparisons. SCZ mouse lines also had higher rates of embryonic phenotypes, 

usually indicative of homozygous lethality or mutations incompatible with life (27.0% vs. 

21.1%). 

 

Distinct pattern of SCZ risk throughout development 

We assessed expression of our SCZ-associated genes throughout development using 

BRAINSPAN53. Data were partitioned into eight developmental stages (four pre-natal, four post-

natal), and four brain regions32,53 (Figure 3a). SCZ-associated genes were significantly co-

expressed, in both pre-natal and post-natal development and in all four brain regions, based on 

local connectedness54 (Figure 3b), global connectedness54 (i.e., average path length between 

genes, Supplementary Figure 5), and network density (i.e., number of edges, Supplementary 

Figure 6). Examining pairwise gene expression correlation (Supplementary Figure 7) and gene 

co-expression networks (Supplementary Figure 8) for each spatiotemporal point indicated that 

the same genes do not drive this co-expression pattern throughout development; rather, it appears 

that separate groups of genes drive early pre-natal, late pre-natal and post-natal clustering.  

 

To visualize this, we calculated Z scores measuring the spatio-temporal specificity of gene 

expression for each SCZ-associated gene, across all 32 time-points (Figure 4). Genes clustered 

into four groups (Supplementary Figure 9), with distinct spatio-temporal expression signatures. 

The largest cluster (Cluster A, Figure 4a; 29 genes) spanned early to late-mid pre-natal 

development (4-24 weeks post conception (pcw)), either across the whole brain (22 genes) or in 

regions 1-3 only (7 genes). Twelve genes were expressed in late pre-natal development (Figure 

4d; 25-38 pcw); 10 genes were expressed in regions 1-3, post-natally and in the late pre-natal 

period (Figure 4c), and 15 genes were expressed throughout development (Figure 4b), either 

specifically in region four (nine genes) or throughout the brain (six genes).  

 

In order to probe the biological relevance of our four BRAINSPAN clusters, we compared these 

gene lists to known and candidate gene sets with relevance to schizophrenia55. Genes in clusters 

A and B, (i.e., clusters with pre-natal expression) were involved in brain morphology and 
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development, nervous system development, neuron development and morphology and synaptic 

development, function, and morphology (Supplementary Table 4). These associations were not 

seen in clusters C and D (i.e., genes with late pre-natal and post-natal expression).  

 

We noticed a relationship between patterns of gene expression and the likelihood of behavioral, 

neurological or related phenotypes in our mutant mouse model database. Mutant mice lacking 

genes expressed exclusively pre-natally in humans, or genes expressed pre- and post-natally, 

were more likely to have any behavioral or neurological phenotypes than mutant mice lacking 

expression of genes expressed primarily in the third trimester or post-natally (p = 1.7 × 10-4) 

(Supplementary Figure 10). 

 

Discussion 

In this study, we present DLPFC gene expression prediction models, constructed using 

CommonMind Consortium genotype and gene expression data. These prediction models may be 

applied to either raw data or summary statistics, in order to yield tissue-specific gene expression 

information in large data sets. This allows researchers to access transcriptome data for non-

peripheral tissues, at scales currently prohibited by the high cost of RNA sequencing, and 

circumventing distortions in measures of gene expression stemming from errors of measurement 

or environmental influences. As disease status may alter gene expression but not the germline 

profile, analyzing genetically regulated expression ensures that we identify only the causal 

direction of effect between gene expression and disease15. Large, imputed transcriptomic datasets 

represent the first opportunity to study the role of subtle gene expression changes (and therefore 

modest effect sizes) in disease development.  

 

There are some inherent limitations to this approach. The accuracy of transcriptomic imputation 

is reliant on access to large eQTL reference panels, and it is therefore vital that efforts to collect 

and analyze these samples continue.  Transcriptomic inputation has exciting advantages for gene 

discovery as well as downstream applications15,56,57; however, the relative merits of existing 

methodologies are as yet under-explored. Here, sparser elastic net models better captured gene 

expression regulation than BSLMM; at the same time, the improved performance of elastic net 

over max-eQTL models suggests that a single eQTL model is over-simplified2,15. Fundamentally, 
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transcriptomic imputation methods model only the genetically regulated portion of gene 

expression, and so cannot capture or interpret variance of expression induced by environment or 

lifestyle factors, which may be of particular importance in psychiatric disorders. Given the right 

study design, analyzing genetic components of expression together with observed expression 

could open doors to better study the role of gene expression in disease. 

 

Sample size and tissue matching contribute to accuracy of transcriptomic imputation results. Our 

CMC-derived DLPFC prediction models had higher average validation R2 values in external 

DLPFC data than GTEx-derived brain tissue models. Notably, the model with the second highest 

percent of genes passing the R2 threshold is the Thyroid, which has the largest sample size 

among the GTEx brain prediction models. When looking at mean R2 values, the second highest 

value comes from the GTEx Frontal Cortex, despite the associated small sample size, implying at 

least some degree of tissue specificity of eQTLs architecture.  

 

We compared transcriptomic imputation accuracy in European and African-American 

individuals, and found that our models were applicable to either ethnicity with only a small 

decrease in accuracy. Common SNPs shared across ethnicities have important effects on gene 

expression, and as such we expect GREX to have consistency across populations. There is a 

well-documented dearth of exploration of genetic associations in non-European cohorts58,59. We 

believe that these analyses should be carried out in non-European cohorts. 

 

We applied the CMC-DLPFC and GTEx-derived prediction models to schizophrenia cases and 

controls from the PGC2 and CLOZUK2 collections, constituting a large transcriptomic analysis 

of schizophrenia. Predicted gene expression levels were calculated for 19,661 unique genes 

across brain regions (Figure 1c) and tested for association with SCZ case-control status. We 

identified 413 significant associations, constituting 67 independent associations. We found 

significant replication of our CMC DLPFC associations in a large independent replication 

cohort, in collaboration with the iPSYCH-GEMS consortium. Our prediXcan results were 

significantly correlated with co-localization estimates (“PP4”) from COLOC. Importantly, 

GWAS loci with no significant prediXcan associations also had no evidence for co-localization 

with eQTLs. Together, these results imply that our prediXcan associations identify genes with 
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good evidence for colocalization between GWAS and eQTL architecture, and are not 

contaminated by linkage disequilibrium (LD). One caveat is that four of our associations 

(SNX19, NAGA, TYW5, and GNL3) have no evidence for colocalization in COLOC results, or 

following visual inspection of local GWAS and eQTL architecture, and may be false positives. 

 

We compared our CMC DLPFC associations to results using a single-eQTL based method, 

SMR12, in the PGC+CLOZUK schizophrenia GWAS60, which identified 12 genome-wide 

significant associations. All significant SMR associations were also significant in our DLPFC 

prediXcan analysis, and all directions of effect were concordant between the two studies. A 

recent TWAS study of 30 GWAS summary statistic traits56 identified 38 non-MHC genes 

associated at tissue-level significance with SCZ in CMC- and GTEx-derived brain tissues (i.e., 

matching those used in our study). Of these, 26 also reach genome-wide significance in our 

study, although in many instances these genes are not identified as the lead independent 

associated gene following our conditional analysis. Among our 67 SCZ-associated genes, 19 

were novel, i.e. did not fall within 1 Mb of a previous GWAS locus (including 5/7 of the novel 

brain genes identified in the recent TWAS analysis).   

 

We used conditional analyses to identify independent associations within loci. These analyses 

clarify the most strongly associated genes and tissues (Table 1), while we note that nearly co-

linear gene-tissue pairs could also represent causal associations. The tissues highlighted allowed 

us to tabulate apparently independent contributions to SCZ risk from different brain regions, 

even though their transcriptomes are highly correlated generally. We find DLPFC and 

Cerebellum effects, as well as from Putamen, Caudate and Nucleus Accumbens Basal Ganglia. 

One caveat here is that tissue-associations are likely driven by sample size of the eQTL reference 

panel, as well as biology. It is likely that the large sample size of the DLPFC reference panel 

contributes partially to the greater signal identified in the DLPFC.  

 

We used these genic associations to search for enrichments with molecular pathways and gene 

sets, and identified 36 significant enriched pathways. Among novel pathways, we identified a 

significant association with HEX-A deficiency. Despite the well-studied and documented 

symptomatic overlap between adult-onset HEX-A deficiency and schizophrenia, we believe that 
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this is the first demonstration of shared genetics between the disorders. Notably, this overlap is 

not driven by a single highly-associated gene which is shared by both disorders; rather, every 

single gene in the HEX-A pathway is nominally significant in the SCZ association analysis, and 

five genes have p < 1 × 10-3, indicating that there may be substantial shared genetic etiology 

between the two disorders that warrants further investigation. Additionally, we identified a 

significant overlap between our SCZ-associated genes and a number of pathways associated with 

porphyrin metabolism. Porphyric disorders have been well characterized and are among early 

descriptions of “schizophrenic” and psychotic presentations of schizophrenia, as described in the 

likely eponymous mid-19th century poem “Porphyria’s Lover”, by Robert Browning61, and have 

been cited as a likely diagnosis for the various psychiatric and metabolic ailments of Vincent van 

Gogh62–67 and King George III68. 

 

Finally, we assessed patterns of expression for the 67 SCZ-associated genes throughout 

development using spatio-temporal transcriptomic data obtained from BRAINSPAN. We 

identified four clusters of genes, with expression in four distinct spatiotemporal regions, ranging 

from early pre-natal to strictly post-natal expression. There are plausible hypotheses and genetic 

evidence for SCZ disease development in adolescence, given the correlation with age of onset, as 

well as prenatally, supported by genetic overlap with neurodevelopmental disorders69–71 as well 

as the earlier onset of cognitive impairments72–75. Understanding the temporal expression 

patterns of SCZ-associated genes can help to elucidate gene development and trajectory, and 

inform research and analysis design. Identification of SCZ-associated genes primarily expressed 

prenatally is notable given our adult eQTL reference panels, and may reflect common eQTL 

architecture across development, which is known to be partial76–78; therefore, our results should 

spur interest in extending transcriptomic imputation data and/or methods to early development76. 

Identification of SCZ-associated genes primarily expressed in adolescence and adulthood is of 

particular interest for direct analysis of the brain transcriptome in adult psychiatric cases.  

 

eQTL data have been recognized for nearly a decade as potentially important for understanding 

complex genetic variation. Nicolae et al.1 showed that common variant-common disease 

associations are strongly enriched for genetic regulation of gene expression. Therefore, 

integrative approaches combining transcriptomic and genetic association data have great 
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potential. Current transcriptomic imputation association analyses increase power for genetic 

discovery, with great potential for further development, including leveraging additional data 

types such as chromatin modifications79 (e.g. methylation, histone modification), imputing 

different tissues or different exposures (e.g. age, smoking, trauma) and modeling 

trans/coexpression effects. It remains critical to leverage transcriptomic impuation associations 

to provide insights into specific disease mechanisms. Here, the accelerated identification of 

disease-associated genes allows the detection of novel pathways and distinct spatiotemporal 

patterns of expression in schizophrenia risk.  
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URLs 
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Figure Legends for main text 

 

Figure 1: Replication of DLPFC prediction models in independent data. 
Measured gene expression (ROSMAP RNA-seq) was compared to predicted genetically-

regulated gene expression for CMC DLPFC and 12 GTeX predictor databases. Replication R2 

values are significantly higher for the DLPFC than for the 12 GTEX brain expression models. 

A. Distribution of RR
2 values of CMC DLPFC predictors in ROSMAP data. Mean RR

2 = 

0.056. 47.7% of genes have RR
2  >= 0.01. Boxplots show mean, quartiles,; whiskers show 

full range of data.  

B. Distribution of RR
2 values of 12 GTeX predictors in ROSMAP data. 

Table of sample sizes and p-val thresholds for CMC DLPFC and GTeX data. Number of 

samples, number of genes in the prediXcan model and number of eGenes are all significantly 

correlated with predictor performance in ROSMAP data (spearman correlation test) . 

 

Figure 2: SCZ associations results 
A) 413 genes are associated with SCZ across 12 brain tissues. Each point represents one 

gene-tissue pair. 

B) 67 genes remain significant outside the MHC after stepwise conditional analysis 

C) Number of genome-wide significant loci, outside the MHC region,  identified in each 

brain region. These trends are partly driven by differences in power between brain 

regions.  

Abbreviations are as follows; CB- Cerebellum; CX- Cortex; FL- Frontal Cortex; DLPFC- Dorso-

lateral pre-frontal cortex; CB HEMI- Cerebellar Hemisphere; HIP- Hippocampus; PIT- Pituitary 

Gland; HTH- Hypothalamus; NAB- Nucleus Accumbens (Basal Ganglia); PUT- Putamen (Basal 

Ganglia); CAU- Caudate (Basal Ganglia); CNG- Anterior Cingulate Cortex 

 

Figure 3: SCZ-associated genes are co-expressed throughout development and across brain 

regions 
A) Brain tissues selected for each of four brainspan regions. Brainspan includes 525 samples 

from 43 unique individuals. Region 1: IPC, V1C, ITC, OFC, STC, A1C; Region 2:S1C, 

M1C, DFC, VFC, MFC; Region 3:HIP, AMY, STR; Region 4: CB 

Average clustering coefficients were calculated for all pairs of SCZ-associated genes, and 

compared to average clustering coefficients for 100,000 permuted gene networks to obtain 

empirical significance levels. 

 

Figure 4: Gene expression patterns for SCZ-associated genes cluster into four groups, 

relating to distinct spatiotemporal expression.  
Brain regions are shown in figure 3a.  

A. 29 genes are expressed in the early-mid pre-natal period (4-24 post-conception weeks) 

B. 15 genes are expressed throughout development; subclusters correspond to either specific 

expression in region 4, or expression across the brain 

C. Ten genes are expressed in the late-prenatal (25-38pcw) and post-natal period 

D. 12 genes are expressed in the late pre-natal period (25-39pcw) 
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Table 1: SCZ-associated genes following conditional analysis. 67 non-MHC genes are 

significantly associated with schizophrenia following conditional analysis. Effect sizes (BETA) 

refer to predicted genetically regulated gene expression (GREX) in cases compared to controls. 

Effect sizes and odds ratios are also shown adjusted to ‘unit’ variance in gene expression. OR, 

odd’s ratio; DLPFC, dorso-lateral prefrontal cortex 

 

Gene name Tissue  BETA P GVAR 

Adjusted 

BETA 

Adjusted 

OR 

GNL3 Cerebellum 0.037 1.39x10-11 0.115 0.012 1.012 

THOC7 Cerebellum -0.113 5.77x10-10 0.010 -0.011 0.989 

NAGA Cerebellum 0.122 1.12x10-09 0.009 0.011 1.011 

TAC3 Cerebellum -0.868 8.03x10-08 0.000 -0.015 0.985 

CHRNA2 Cerebellum -0.016 1.63x10-07 0.395 -0.010 0.990 

ACTR5 Cerebellum 0.208 3.88x10-07 0.019 0.029 1.029 

INO80E Frontal Cortex 0.130 7.25x10-12 0.009 0.012 1.013 

PLPPR5 Frontal Cortex -0.672 2.58x10-09 0.006 -0.053 0.948 

FAM205A Frontal Cortex 0.043 1.21x10-08 0.061 0.011 1.011 

AC110781.3 Thyroid 0.342 1.31x10-13 0.002 0.014 1.014 

IMMP2L Thyroid -0.073 7.09x10-12 0.046 -0.016 0.984 

IGSF9B Thyroid -0.024 3.05x10-07 0.156 -0.010 0.991 

NMRAL1 Thyroid 0.038 4.03x10-07 0.060 0.009 1.009 

HIF1A DLPFC 11.130 7.52x10-14 0.000 0.148 1.159 

TIMM29 DLPFC 11.207 9.27x10-14 0.000 0.168 1.183 

ST7-OT4 DLPFC 10.170 5.79x10-13 0.001 0.318 1.374 

H2AFY2 DLPFC 10.962 3.60x10-12 0.000 0.191 1.211 

STARD3 DLPFC 10.740 5.90x10-12 0.001 0.304 1.355 

CTC-471F3.5 DLPFC 8.535 1.11x10-11 0.000 0.104 1.110 

SF3A1 DLPFC 8.651 1.32x10-11 0.000 0.083 1.086 

ZNF512 DLPFC 10.312 1.32x10-11 0.001 0.261 1.298 

FURIN DLPFC -0.084 2.22x10-11 0.022 -0.012 0.988 

INHBA-AS1 DLPFC 8.399 2.24x10-11 0.000 0.127 1.135 

SF3B1 DLPFC 0.099 6.14x10-11 0.014 0.012 1.012 

EFTUD1P1 DLPFC -0.092 1.81x10-10 0.017 -0.012 0.988 

MLH1 DLPFC 2.840 2.10x10-10 0.001 0.069 1.071 

GATAD2A DLPFC -0.044 2.18x10-10 0.071 -0.012 0.988 

METTL1 DLPFC 9.357 2.23x10-10 0.000 0.166 1.181 

DMC1 DLPFC 7.229 4.48x10-10 0.000 0.130 1.139 

RAD51D DLPFC 7.612 2.11x10-09 0.000 0.111 1.117 
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RERE DLPFC 2.847 6.32x10-09 0.000 0.036 1.037 

PCCB DLPFC -0.044 2.05x10-08 0.054 -0.010 0.990 

CLCN3 DLPFC 0.141 2.96x10-08 0.005 0.010 1.010 

ATG101 DLPFC 8.086 4.90x10-08 0.007 0.695 2.005 

JRK DLPFC 0.032 1.25x10-07 0.091 0.010 1.010 

PTPRU DLPFC -0.077 1.60x10-07 0.016 -0.010 0.990 

MARCKS DLPFC 0.398 2.05x10-07 0.001 0.015 1.015 

TCF4 Anterior Cingulate Cortex -0.059 5.22x10-13 0.051 -0.013 0.987 

DGKD Anterior Cingulate Cortex -0.937 2.63x10-11 0.001 -0.022 0.979 

C1QTNF4 Anterior Cingulate Cortex -0.173 1.37x10-09 0.010 -0.017 0.983 

PITPNA Anterior Cingulate Cortex -0.243 1.77x10-07 0.002 -0.010 0.990 

FXR1 Caudate Basal Ganglia 0.439 5.40x10-12 0.001 0.017 1.017 

ZDHHC1 Caudate Basal Ganglia 0.354 5.36x10-08 0.001 0.011 1.012 

PDE4D Cerebellar Hemisphere 0.365 6.81x10-11 0.001 0.013 1.013 

DRD2 Cerebellar Hemisphere -0.182 2.47x10-10 0.004 -0.012 0.988 

PITPNM2 Cerebellar Hemisphere -0.065 2.21x10-09 0.028 -0.011 0.989 

RINT1 Cerebellar Hemisphere 0.086 6.32x10-09 0.016 0.011 1.011 

SRMS Cerebellar Hemisphere -0.440 3.08x10-08 0.001 -0.011 0.989 

SETD6 Cerebellar Hemisphere -0.043 1.05x10-07 0.054 -0.010 0.990 

APOPT1 Cortex -0.074 1.24x10-10 0.026 -0.012 0.988 

VSIG2 Cortex -0.092 6.01x10-09 0.013 -0.011 0.989 

SDCCAG8 Cortex -0.069 3.88x10-07 0.002 -0.003 0.997 

PIK3C2A Cortex -0.040 4.04x10-07 0.365 -0.024 0.976 

AS3MT Frontal Cortex 0.594 5.65x10-17 0.001 0.017 1.017 

FOXN2 Hippocampus -0.250 2.65x10-07 0.021 -0.036 0.964 

RASIP1 Nucleus Accumbens Basal Ganglia 0.055 3.80x10-08 0.034 0.010 1.010 

TCF23 Nucleus Accumbens Basal Ganglia -0.076 4.83x10-08 0.019 -0.010 0.990 

TTC14 Nucleus Accumbens Basal Ganglia -0.089 4.84x10-08 0.013 -0.010 0.990 

TYW5 Putamen Basal Ganglia -0.080 2.63x10-13 0.035 -0.015 0.985 

SNX19 Putamen Basal Ganglia 0.031 1.31x10-12 0.179 0.013 1.013 

CIART Putamen Basal Ganglia 0.090 6.78x10-10 0.017 0.012 1.012 

SH2D7 Putamen Basal Ganglia 0.096 7.89x10-09 0.013 0.011 1.011 

DGUOK Putamen Basal Ganglia 0.255 8.26x10-08 0.002 0.011 1.011 

C12orf76 Putamen Basal Ganglia 0.031 2.27x10-07 0.095 0.010 1.010 

LRRC37A Putamen Basal Ganglia -0.035 2.69x10-07 0.076 -0.010 0.991 

AC005841.1 Pituitary 0.162 3.28x10-09 0.005 0.011 1.011 

RPS17 Pituitary 0.035 4.03x10-08 0.082 0.010 1.010 

 

Associations in the MHC region      
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BTN1A1 Caudate Basal Ganglia -0.261 1.67x10-22    

VARS2 Anterior Cingulate Cortex  0.075 7.48x10-15    

HIST1H3H Putamen Basal Ganglia -1.106 3.22x10-10    

NUDT3 Nucleus Accumbens Basal Ganglia 0.104 6.55x10-9    
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Table 2: Significantly enriched pathways and gene sets. We tested for enrichment of 8,657 

pathways among our prediXcan results using a competitive p-value in MAGMA and calculated 

an FDR-corrected p-value to determine significance. FMRP,  fragile-X mental retardation 

protein; BP, bipolar; CNV, copy number variant; LOF, loss of function. 

 

Analysis Gene Set Comp P FDR P 

Hypothesis 

driven 

 

FMRP-targets 1.96x10-08 3.097x10-06 

BP denovo CNV 7.92x10-08 6.257x10-06 

HIGH LOF intolerant 5.86x10-05 0.00309 

Agnostic 

 

Increased spleen iron level 2.72x10-08 0.000245 

Decreased IgM level 6.80x10-07 0.00307 

Condensed chromosome                                                                                                                                                                               1.99x10-06 0.00598 

Chromosome 2.80x10-06 0.00632 

Abnormal spleen iron level 6.79x10-06 0.00765 

Mitotic Anaphase                                                                                                                                                                                         6.39x10-06 0.00765 

Mitotic Metaphase and Anaphase                                                                                                                                                                           5.13x10-06 0.00765 

Resolution of Sister Chromatid Cohesion                                                                                                                                                                  5.82x10-06 0.00765 

Increased liver iron level 1.03x10-05 0.0103 

Separation of Sister Chromatids                                                                                                                                                                          1.28x10-05 0.0115 

Regulation of Rab GTPase activity                                                                                                                                                                  1.78x10-05 0.0123 

Regulation of Rab protein signal transduction                                                                                                                                                      1.78x10-05 0.0123 

Protein phosphorylated amino acid binding                                                                                                                                                          1.75x10-05 0.0123 

Chromosome 2.57x10-05 0.0165 

Hexosaminidase activity                                                                                                                                                                            3.47x10-05 0.0174 

Abnormal learning memory conditioning 3.11x10-05 0.0174 

Abnormal liver iron level 3.47x10-05 0.0174 

Mitotic Prometaphase                                                                                                                                                                                     2.99x10-05 0.0174 

M Phase                                                                                                                                                                                                  3.70x10-05 0.0176 

Positive regulation of Rab GTPase activity                                                                                                                                                         5.93x10-05 0.0232 

Rab GTPase activator activity                                                                                                                                                                      5.93x10-05 0.0232 

Protein phosphatase type 2A regulator activity                                                                                                                                                     5.24x10-05 0.0232 

Replicative senescence                                                                                                                                                                             5.44x10-05 0.0232 

Condensed nuclear chromosome                                                                                                                                                                       7.11x10-05 0.0267 

Ubiquitin-specific protease activity                                                                                                                                                               0.000104 0.0335 

Ras GTPase activator activity                                                                                                                                                                      9.61x10-05 0.0335 

Metabolism of porphyrins                                                                                                                                                                                 0.000103 0.0335 

Kinetochore                                                                                                                                                                                        0.000103 0.0335 

Decreased physiological sensitivity to xenobiotic 0.000127 0.0381 

Antigen Activates B Cell Receptor Leading to 

Generation of Second Messengers                                                                                                                             

0.000124 0.0381 
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Phosphoprotein binding                                                                                                                                                                             0.000146 0.0424 

Abnormal dorsal-ventral axis patterning 0.000152 0.0429 
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Online Methods (Limit 3,000 words, at end of manuscript, currently 2,064) 

 

Creating gene expression predictors for the dorso-lateral pre-frontal cortex 

eQTL Data  

Genotype and RNAseq data were obtained for 538 European individuals through the 

CommonMind Project14. The mean age of these individuals was 67.4 years. RNA-seq data were 

generated from post-mortem human dorsolateral prefrontal cortex (DLPFC). The gene 

expression matrix was normalized to log(counts per million) using voom. Adjustments were 

made for known covariates (including sample ascertainment, quality, experimental parameters, 

ancestry) and surrogate variables, using linear modelling with voom-derived regression weights. 

Details on genotyping, imputation and RNA-seq generation may be found in the CommonMind 

Consortium (CMC) flagship paper14.  

 

The samples used here include 254 schizophrenia and 52 bipolar cases, as well as controls. The 

CMC flagship paper14 applied a permutation test and an explicit disease-genotype interaction 

term to demonstrate that there is no significant effect of disease on eQTLs. We have therefore 

included both cases and controls in this analysis, to maximize sample size.  

 

A 1% minor allele frequency (MAF) cut-off was applied. Variants were filtered to remove any 

SNPs in high LD (r2>0.9), indels, and all variants with ambiguous ref/alt alleles. All protein 

coding genes on chromosomes 1-22 with at least one cis-SNP after these QC steps were included 

in this analysis (15,362 genes in total). SNPs in trans have been shown not to provide a 

substantial improvement in prediction accuracy15 and were not included here. 

 

Building gene expression prediction databases 

Gene expression prediction models were created following the “PrediXcan” method15. Matched 

genotype and gene expression data were used to identify a set of variants that influence gene 

expression (Supplementary Figure 2a). Weights for these variants are calculated using regression 

in a ten-fold cross-validation framework.  All cross-validation folds were balanced for diagnoses, 

ethnicity, and other clinical variables.  
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All SNPs within the cis-region (+/- 1 Mb) of each gene were included in the regression analysis. 

Accuracy of prediction was estimated by comparing predicted expression to measured 

expression, across all 10 cross-validation folds; this correlation was termed cross-validation R2 or 

Rcv
2. Genes with Rcv

2 > 0.01 (~p < 0.05) were included in our final predictor database. 

 

Prediction models were compared across four different regression methods; elastic net 

(prediXcan), ridge regression (using the TWAS method16), Bayesian sparse linear mixed 

modelling (BSLMM; TWAS), and linear regression using the best eQTL for each gene 

(Supplementary Figure 1a). Mean Rcv
2 values were significantly higher for elastic net regression 

(mean Rcv
2 = 0.056) than for eQTL-based prediction (mean Rcv

2 = 0.025), BSLMM (mean Rcv
2 = 

0.021) or Ridge Regression (mean Rcv
2 = 0.020). The distribution of Rcv

2 values was also 

significantly higher for elastic net regression than for any other method (Kolgorov-Smirnov test, 

p < 2.2 × 10-16). 

 

Replication of gene expression prediction models in independent data  

Predictive accuracy of CMC DLPFC models were tested in two independent datasets. 

First, we used data from the Religious Orders Study and Memory and Aging Project 

(ROSMAP19,20). This study included genotype data and DLPFC RNA-seq data for 451 

individuals of European descent (Supplementary Figure 2b). 

 

DLPFC GREX was calculated using the CMC DLPFC predictor models. Correlation between 

RNA-seq expression and CMC DLPFC GREX (“Replication R2 values” or RR
2) was used as a 

measure of predictive accuracy.   RR
2 was calculated including correction for ten ancestry 

components, as follows: 

Equation 1: RR
2 calculation. 

RR1
2 = (M ~ GREX +  PC1 + PC2 + ⋯ + PC10) 

RR2
2 = (M ~ PC1 + PC2 + ⋯ + PC10) 

RR
2 = RR1

2 -RR2
2  

 

Where: 

M Measured expression (RNA-seq) 
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GREX GREX imputed expression 

PCn nth Principal Component 

 

A small number of genes (158) had very low predictive accuracy and were removed from further 

analyses. Cross-validation R2 (Rcv
2) values and RR

2 values were highly correlated (rho = 0.62, p < 

2.2 × 10-16; Supplementary Figure 3a). 55.7% of CMC DLPFC genes had RR
2 values > 0.01. 

 

Prediction accuracy was also assessed for 11 publicly available GTEx neurological predictor 

databases, and RR
2 values used to compare to CMC DLPFC performance. CMC DLPFC models 

had higher average RR
2 values, more genes with RR

2 > 0.01, and significantly higher overall 

distributions of RR
2 values than any of the twelve GTEx brain tissue models (ks-test, p < 2.2 × 

10-16; Figure 1a,b).  

 

To estimate trans-ancestral prediction accuracy, GREX was calculated for 162 African-American 

individuals and 280 European individuals from the NIMH Human Brain Collection Core 

(HBCC) dataset (Supplementary Figure 2c). Predicted gene expression levels were compared to 

DLPFC expression levels measured using microarray. There was a significant correlation 

between the European and African-American samples for RCV
2 values and RR

2 values (rho = 

0.66, 0.56; Supplementary Figure 3b,c). RR
2 values were higher on average in Europeans, but 

were significantly correlated between African-Americans and Europeans (rho = 0.78, p < 2.2 × 

10-16, Pearson test; Supplementary Figure 3d).  

 

Extension to Summary Statistics 

Transcriptomic Imputation may be applied to summary statistics instead of raw data, in instances 

where raw data is unavailable. However, this method suffers from slightly reduced accuracy, 

requires covariance matrices calculated in an ancestrally-matched reference population25 (usually 

only possible for European cohorts), and precludes testing of endophenotypes within the data, 

and so should not be applied when raw data are available.  

 

We assessed concordance between CMC DLPFC transcriptomic imputation results using 

summary-statistics (S-PrediXcan25) and raw genotypes (PrediXcan15) using nine European and 
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three Asian PGC-SCZ cohorts22 for which both data types were available. Cohorts were chosen 

to encompass a range of case : control ratios, to test previous suggestions that accuracy is 

reduced in unbalanced cohorts80. Covariances for all variants included in the DLPFC predictor 

models were computed using S-PrediXcan25. For all European cohorts, Pearson correlation of 

log-10 p-values and effect sizes was above 0.95. The mean correlation was 0.963 

(Supplementary Figure 11).  There was no correlation between total sample size, case-control 

ratio, p-value or effect-size. Seven genes were removed due to discordant p-values. For the three 

Asian cohorts tested, the mean correlation was 0.91 (Supplementary Figure 12). 

 

Concordance was also tested for the same nine European PGC-SCZ cohorts, across 12 

neurological GTEx prediction databases. All correlations were significant (rho > 0.95, p < 2.2 × 

10-16). There was a significant correlation between p-value concordance and case-control ratio 

(rho = 0.37, p = 7.606 × 10-15). 114 genes had discordant p-values between the two methods and 

were excluded from future analyses.  

 

Application to Schizophrenia 

Dataset Collection 

We obtained 53 discovery cohorts for this study, including 40,299 SCZ cases and 65,264 

controls (Supplementary Figure 4). 52/53 cohorts (35,079 cases, 46,441 controls) were obtained 

through collaboration with the Psychiatric Genomics Consortium, and are described in the 2014 

PGC Schizophrenia GWAS22. The remaining cohort, referred to as CLOZUK2, constitutes the 

largest single cohort of individuals with Schizophrenia (5,220 cases and 18,823 controls), 

collected as part of an effort to investigate treatment-resistant Schizophrenia60.  

 

50/53 datasets included individuals of European ancestry, while three datasets include 

individuals of Asian ancestry (1,836 cases, 3,383 controls). All individuals were ancestrally 

matched to controls. Information on genotyping, quality control and other data management 

issues may be found in the original papers describing these collections22,60. All sample 

collections complied with ethical regulations. Details regarding ethical compliance and consent 

procedures may be found in the original manuscripts describing these collections22,60. 
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Access to dosage data was available for 44/52 PGC-SCZ cohorts. The remaining PGC cohorts, 

and the CLOZUK2 cohort provided summary statistics. Three European PGC cohorts were trio-

based, rather than case-control.  

 

Additionally, we tested for replication of our CMC DLPFC associations in an independent 

dataset of 4,133 cases and 24,788 controls obtained through collaboration with the iPSYCH-

GEMS schizophrenia working group (effective sample size 14,169.5; Supplementary Figure 4b, 

Supplementary Note). 

 

Transcriptomic Imputation and association testing 

Transcriptomic Imputation was carried out individually for each case-control PGC-SCZ cohort 

with available dosage data (44/52 cohorts). Predicted gene expression levels were computed 

using the DLPFC predictors described in this manuscript, as well as for 11 other brain tissues 

prediction databases created using  GTEx tissues15,21,81,82 (Figure 1c). Associations between 

predicted gene expression values and case-control status were calculated using a linear 

regression test in R. Ten ancestry principal components were included as covariates. Association 

tests were carried out independently for each cohort, across 12 brain tissues.  

 

For the eight PGC cohorts with no available dosage data, the three PGC trio-based analyses, and 

the CLOZUK2 cohort, a summary-statistic based transcriptomic imputation approach was used 

(“S-PrediXcan25”), as described previously.  

 

Meta-analysis 

Meta-analysis was carried out across all 53 cohorts using METAL83. Cochran’s Q test for 

heterogeneity was implemented in METAL83,84, and a heterogeneity p-value threshold of p > 1 × 

10-3 applied to results. A conservative significance threshold was applied to these data, 

correcting for the total number of genes tested across all tissues (121,611 gene-region tests in 

total). This resulted in a genome-wide significance threshold of 4.1 × 10-7.  
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Effect sizes and direction of effect quoted in this manuscript refer to changes in predicted 

expression in cases compared to controls i.e., genes with negative effect sizes have decreased 

predicted expression in cases compared to controls.  

 

Identifying independent associations 

We identified a number of genomic regions which contained multiple gene associations and/or 

genes associated across multiple tissues. We identified 58 of these regions, excluding the MHC, 

based on distance between associated genes, and verified them using visual inspection.  In order 

to identify independent genic associations within these regions, we carried out a stepwise 

forward conditional analysis following “GCTA-COJO” theory85 using “CoCo” (see URLs), an R 

implementation of GCTA-COJO. CoCo allows the specification of custom correlation matrices 

by the user (for example, ancestrally specific LD matrices). For each region, we generated a 

predicted gene expression correlation matrix for all significant genes (p≤ 1x10-6), as the root-

effective sample size83 (Neff, eqn 2) weighted average correlation across all cohorts where we had 

access to dosage data. 

Equation 2: Effective Sample Size, Neff 

Neff =
4

(
1

Ncases
+

1
Ncontrols

)
 

 

Forward stepwise conditional analysis of all significant genes was carried out using joint linear 

regression modeling. First, the top-ranked gene was added to the model, then the next most 

significant gene in a joint model is added if significant at a given p-value threshold, and so on 

until either all genes are added to the model, or no joint statistic reaches the significance 

threshold. 

 

We calculated effect sizes and odds ratios for SCZ-associated genes by adjusting “CoCo” betas 

to have unit variance (Table 1, eqn. 3).   

Equation 3: GREX Beta adjustment  

β = βCoCo x √GVAR 

 

Where GVAR is the variance of the GREX predictor for each gene.   
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Gene set Analyses 

Pathway analyses were carried out using an extension to MAGMA86.  P-values were assigned to 

genes using the most significant p-value achieved by each gene in the meta-analysis. We then 

carried out a competitive gene-set analysis test using these p-values, using two gene sets: 

 

1. 159 gene sets with prior hypotheses for involvement in SCZ development, including loss-

of-function intolerant genes, CNV-intolerant genes, targets of the fragile-X mental 

retardation protein, CNS related gene sets, and 104 behavioral and neurological pathways 

from the Mouse Genome Informatics database14,60,69,87.  

2. An agnostic analysis, including ~8,500 gene sets collated from publicly available 

databases including GO88,89, KEGG90, REACTOME91, PANTHER92,93, BIOCARTA94 

and MGI52. Sets were filtered to include only gene sets with at least ten genes.  

 

 Significance levels were adjusted across all pathways included in either test using the 

Benjamini-Hochberg “FDR” correction in R26.  

 

Coexpression of SCZ genes throughout development 

We investigate spatiotemporal expression of our associated genes using publicly available 

developmental transcriptome data, obtained from the BRAINSPAN consortium53. We partitioned 

these data into biologically relevant spatio-temporal data sets95, corresponding to four general 

brain regions; the frontal cortex, temporal and parietal regions, sensory-motor regions, and 

subcortical regions (Figure 3a96), and eight developmental time-points (four pre-natal, four post-

natal)95.  

 

First, we tested for correlation of gene expression for all SCZ-associated genes at each 

spatiotemporal time-point. Genes with pearson correlation coefficients >= 0.8 or <=-0.8 were 

considered co-expressed. 100,000 iterations of this analysis were carried out using random gene 

sets with equivalent expression level distributions to the SCZ-associated genes. For each gene 

set, a gene co-expression network was created, with edges connecting all co-expressed genes. 

Networks were assessed using three criteria; first, the number of edges within the network, as a 

crude measured of connectedness; second, the Watts-Strogatz average path length between 
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nodes, as a global measure of connectedness across all genes in the network54; third, the Watts-

Strogatz clustering coefficient, to measure tightness of the clusters within the network54. For 

each spatio-temporal time point, we plotted gene-pair expression correlation (Supplementary 

Figure 7) and co-expression networks (Supplementary Figure 8). 

 

For each of the 67 SCZ-associated genes, we calculated average expression at each 

spatiotemporal point. We then calculated Z-Score of expression specificity using these values, 

and plotted Z-Scores to visually examine patterns of gene expression throughout development 

and across brain regions. Clusters were formally identified using a dendrogram cut at height 10 

(Supplementary Figure 9).  

 

In-silico replication of SCZ-associated genes in mouse models 

We downloaded genotype, knock-out allele information and phenotyping data for ~10,000 

mouse mutant models from five large mouse phenotyping and genotyping projects; Mouse 

Genome Informatics (MGI52), EuroPhenome49,97, Mouse Genome Project (MGP49,50), 

International Mouse Phenotyping Consortium (IMPC98), and Infection and Immunity 

Immunophenotyping (3I98). Where possible, we also downloaded raw phenotyping data 

regarding specific assays. In total, we obtained 175,012 phenotypic measurements, across 10,288 

mutant mouse models. We searched for any mouse lines with phenotypes related to behavior 

(natural, observed, stereotypic or assay-induced); cognition or working memory; brain, head or 

craniofacial dysmorphology; retinal or eye morphology, and/or vision or visual dysfunction or 

impairment; ear morphology or hearing dysfunction or impairment; neural tube defects; brain 

and/or nervous system development; abnormal nociception.  

 

We calculated the rate of phenotypic abnormalities in all mouse lines with reduced expression of 

genes identified in our prediXcan analysis (“SCZ-associated mouse lines”). We compared these 

to (1) the ‘baseline’ rate of phenotypic abnormalities across all 10,288 mouse lines; and (2) the 

rate of abnormalities in mouse lines associated with other disorders. To do this, we downloaded 

all publicly-available whole-blood-derived S-PrediXcan results (as of March 2018, see URLs). 

In total, we obtained data for 1,907 genes reaching p < 5 × 10-6, across 65 studies. We calculated 

rates of phenotypic abnormalities for each of these 65 studies.  
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Data Availability 

Our CMC-derived DLPFC prediction models are publicly available at 

https://github.com/laurahuckins/CMC_DLPFC_prediXcan 

  

https://github.com/laurahuckins/CMC_DLPFC_prediXcan
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