1,438 research outputs found

    Nuevas tecnologías en la corrección de las deformidades de la columna vertebral. Sistema Transpine

    Get PDF
    Los sistemas de corrección de última generación para el tratamiento de las deformidades del ra - quis han suscitado gran controversia. Realizamos un recuerdo histórico del tratamiento quirúrgico de las afeccio - nes de la columna y describimos un sistema de última generación que permite montajes híbridos (uñas, tornillos pediculares y cables de tracción). Se han intervenido un total de 200 escoliosis idiopáticas neuropáticas y congé - nitas desde 2004 hasta 2010 con el sistema Transpine ® mediante montaje híbrido. Todos los pacientes han sido intervenidos por el mismo cirujano. Se analizó el porcentaje de corrección posoperatoria obtenida. Se observa un cambio 70% y 30% del eje coronal y sagital respectivamente (P<0.001). Las pérdidas angular fueron <10º. El sistema Transpine ® permite la posibilidad de realizar montajes híbridos sin complicaciones para el tratamiento de las deformidades. Los resultados obtenidos son comparables con los publicados en la bibliografía.Correction systems of the latest generation for the treatment of spinal deformities have aroused great controversy. We conducted a historical review of the surgical treatment and we describe a new system that allows the use of hybrid assemblies (claws, pedicle screws and pull cable wires). A total of 200 patients from 2004 to 2010 with idiopathic scoliosis, congenital neuropathic were operated with the Transpine ® system using hybrid assembly. The correction percentage of postoperative obtained was analyzed. Change 70% and 30% res - pectively of the coronal and sagittal axis was observed (P <0.001). The angular losses were <10º. The Transpine ® system let surgeons to perform uncomplicated hybrid safely assemblies for treatment of deformities. The results are comparable with those published in the literature

    Phenological and molecular studies on the introduced seaweed Dictyota cyanoloma (Dictyotales, Phaeophyceae) along the Mediterranean coast of the Iberian Peninsula

    Get PDF
    Dictyota cyanoloma, a distinctive brown algal species characterized by a blue-iridescent margin, was recently reported as an introduced species in the Mediterranean Sea but little is known about its distribution dynamics, morphological plasticity and genetic structure. In this integrative study, we evaluate its past and present occurrence along the Mediterranean Iberian coast, assess the species' phenology in Palamos (Girona, Spain) and analyze the haplotype diversity by sequencing 49 individuals from nine sampling sites for different chloroplast and mitochondrial DNA regions. Although D. cyanoloma currently occurs along all the Mediterranean Iberian coasts (in 19 of 36 localities sampled, mostly in marinas and harbour environments), we were not able to find any herbarium material of this species (at BCN-Phyc and MA) predating the year 1987. In Palamos, D. cyanoloma is present all through the year, with a maximum development in winter and a minimum in summer. Fertile specimens are absent during summer (July and August). Sporophytes are dominant from January to June and gametophytes were found only in February, March and June. Information about the antheridia, which has never been described before, is provided. Two chloroplast and three mitochondrial haplotypes were observed, indicating that multiple introductions of D. cyanoloma occurred in the study area. Additionally, the genetic structure suggests that spread did not occur through simple advancing wave fronts but by several longdistance dispersal events. Further studies employing microsatellite markers could potentially offer a better resolution to unravel expansion and colonisation dynamics of D. cyanoloma in the Mediterranean Sea

    Constraint design rewriting

    Get PDF
    Constraint networks are hyper-graphs whose nodes and hyper-edges represent variables and relations between them, respectively. The problem to assign values to variables by satisfying all constraints is NP-complete. We propose an algebraic approach to the design and transformation of constraint networks, inspired by Architectural Design Rewriting (ADR). The main idea is to exploit ADR to equip constraint networks with some hierarchical structure and represent them as terms of a suitable algebra, when possible. Constraint network transformations such as constraint propagations are then specified with efficient rewrite rules exploiting the network's structure provided by terms. The approach can be understood as (i) an extension of ADR with constraints, and (ii) an application of ADR to the design of reconfigurable constraint networks

    Adaptation is a game

    Get PDF
    Control data variants of game models such as Interface Automata are suitable for the design and analysis of self-adaptive systems

    Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies

    Get PDF
    By reducing energy density, low-energy sweeteners (LES) might be expected to reduce energy intake (EI) and body weight (BW). To assess the totality of the evidence testing the null hypothesis that LES exposure (versus sugars or unsweetened alternatives) has no effect on EI or BW, we conducted a systematic review of relevant studies in animals and humans consuming LES with ad libitum access to food energy. In 62 of 90 animal studies exposure to LES did not affect or decreased BW. Of 28 reporting increased BW, 19 compared LES with glucose exposure using a specific ‘learning’ paradigm. Twelve prospective cohort studies in humans reported inconsistent associations between LES use and Body Mass Index (-0.002 kg/m2/year, 95%CI -0.009 to 0.005). Meta-analysis of short- term randomized controlled trials (RCTs, 129 comparisons) showed reduced total EI for LES- versus sugar-sweetened food or beverage consumption before an ad libitum meal (-94 kcal, 95%CI -122 to -66), with no difference versus water (-2 kcal, 95%CI -30 to 26). This was consistent with EI results from sustained intervention RCTs (10 comparisons). Meta-analysis of sustained intervention RCTs (4 weeks to 40 months) showed that consumption of LES versus sugar led to relatively reduced BW (nine comparisons; -1.35 kg, 95%CI –2.28 to - 0.42), and a similar relative reduction in BW versus water (three comparisons; -1.24 kg, 95%CI –2.22 to -0.26). Most animal studies did not mimic LES consumption by humans, and reverse causation may influence the results of prospective cohort studies. The preponderance of evidence from all human RCTs indicates that LES do not increase EI or BW, whether compared with caloric or non-caloric (e.g., water) control conditions. Overall, the balance of evidence indicates that use of LES in place of sugar, in children and adults, leads to reduced EI and BW, and possibly also when compared with water

    Scientific Production in Children\u27s Literature Through the Web of Science

    Full text link
    Children\u27s literature has raised the interest of different disciplines and has strongly emerged not only in society but also in school and university curricula. This paper aims to analyse production in children\u27s literature and determine the discipline\u27s scientific activity published in International scientific journals indexed in the Web of Science. A total of 1,558 papers published in 474 journals were retrieved. The results show an increase in the number of papers on children\u27s literature over time. Document typology was highly diverse, scientific articles and book reviews accounting for more than 85% of the total production. Lion and the Unicorn, Children\u27s Literature in Education, and International Research in Children\u27s Literature were the journals with the highest production. The journals analysed were classified under 96 different subject categories, Literature and Educational research being the areas with the largest number of publications

    Dynamic electrostatic force microscopy in liquid media

    Full text link
    We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment

    Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning

    Get PDF
    Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.

    The effect of salt fusion processing variables on structural, physicochemical and biological properties of poly(glycerol sebacate) scaffolds

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Polymeric Materials and Polymeric Biomaterials on SEP 21 2020, available online: https://www.tandfonline.com/doi/full/10.1080/00914037.2019.1636247"[EN] Poly(glycerol sebacate), PGS, is a biodegradable elastomer recently proposed in the form of scaffolds for cardiac, vascular, cartilage or neural applications. In the present work, several processing variables for the fabrication of PGS scaffolds by the salt fusion method were systematically studied, namely the pre-polymer/porogen ratio, the salt particles average size, use of tetrahydrofuran to dissolve the pre-polymer for its injection in the porogen template, and the curing pressure. The effect of these variables on their structural, mechanical and biological properties was assessed to select those leading to optimal ones in terms of their potential performance in tissue engineering applications.The authors acknowledge Spanish Ministerio de Economia y Competitividad through DPI2015-65401-C3-2-R project. The authors acknowledge the assistance and advice of the Electron Microscopy Service of the Universitat Politecnica de Valencia (Spain).Vilariño, G.; Muñoz-Santa, A.; Conejero-Garcia, Á.; Vallés Lluch, A. (2020). The effect of salt fusion processing variables on structural, physicochemical and biological properties of poly(glycerol sebacate) scaffolds. International Journal of Polymeric Materials. 69(14):938-945. https://doi.org/10.1080/00914037.2019.1636247S9389456914Fung, Y.-C. (1993). Bioviscoelastic Solids. Biomechanics, 242-320. doi:10.1007/978-1-4757-2257-4_7Chiang, B., Kim, Y. C., Doty, A. C., Grossniklaus, H. E., Schwendeman, S. P., & Prausnitz, M. R. (2016). Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. Journal of Controlled Release, 228, 48-57. doi:10.1016/j.jconrel.2016.02.041Appuhamillage, G. A., Reagan, J. C., Khorsandi, S., Davidson, J. R., Voit, W., & Smaldone, R. A. (2017). 3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels–Alder reaction. Polymer Chemistry, 8(13), 2087-2092. doi:10.1039/c7py00310bZhu, W., Masood, F., O’Brien, J., & Zhang, L. G. (2015). Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 11(3), 693-704. doi:10.1016/j.nano.2014.12.001Gao, S., Guo, W., Chen, M., Yuan, Z., Wang, M., Zhang, Y., … Guo, Q. (2017). Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B, 5(12), 2273-2285. doi:10.1039/c6tb03299kHu, X., Hu, T., Guan, G., Yu, S., Wu, Y., & Wang, L. (2017). Control of weft yarn or density improves biocompatibility of PET small diameter artificial blood vessels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(3), 954-964. doi:10.1002/jbm.b.33909Recco, M. S., Floriano, A. C., Tada, D. B., Lemes, A. P., Lang, R., & Cristovan, F. H. (2016). Poly(3-hydroxybutyrate-co-valerate)/poly(3-thiophene ethyl acetate) blends as a electroactive biomaterial substrate for tissue engineering application. RSC Advances, 6(30), 25330-25338. doi:10.1039/c5ra26747aRibeiro Lopes, J., Azevedo dos Reis, R., & Almeida, L. E. (2016). Production and characterization of films containing poly(hydroxybutyrate) (PHB) blended with esterified alginate (ALG-e) and poly(ethylene glycol) (PEG). Journal of Applied Polymer Science, 134(1). doi:10.1002/app.44362Wang, Y., Ameer, G. A., Sheppard, B. J., & Langer, R. (2002). A tough biodegradable elastomer. Nature Biotechnology, 20(6), 602-606. doi:10.1038/nbt0602-602Nagata, M., Kiyotsukuri, T., Ibuki, H., Tsutsumi, N., & Sakai, W. (1996). Synthesis and enzymatic degradation of regular network aliphatic polyesters. Reactive and Functional Polymers, 30(1-3), 165-171. doi:10.1016/1381-5148(95)00107-7Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., … Vunjak-Novakovic, G. (2006). Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 12(8), 2077-2091. doi:10.1089/ten.2006.12.2077Chen, Q.-Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., … Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29(1), 47-57. doi:10.1016/j.biomaterials.2007.09.010Ravichandran, R., Venugopal, J. R., Sundarrajan, S., Mukherjee, S., & Ramakrishna, S. (2011). Poly(Glycerol Sebacate)/Gelatin Core/Shell Fibrous Structure for Regeneration of Myocardial Infarction. Tissue Engineering Part A, 17(9-10), 1363-1373. doi:10.1089/ten.tea.2010.0441Masoumi, N., Annabi, N., Assmann, A., Larson, B. L., Hjortnaes, J., Alemdar, N., … Khademhosseini, A. (2014). Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials, 35(27), 7774-7785. doi:10.1016/j.biomaterials.2014.04.039Masoumi, N., Jean, A., Zugates, J. T., Johnson, K. L., & Engelmayr, G. C. (2012). Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. Journal of Biomedical Materials Research Part A, 101A(1), 104-114. doi:10.1002/jbm.a.34305Motlagh, D., Yang, J., Lui, K. Y., Webb, A. R., & Ameer, G. A. (2006). Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 27(24), 4315-4324. doi:10.1016/j.biomaterials.2006.04.010Frydrych, M., Román, S., MacNeil, S., & Chen, B. (2015). Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering. Acta Biomaterialia, 18, 40-49. doi:10.1016/j.actbio.2015.03.004SUNDBACK, C., SHYU, J., WANG, Y., FAQUIN, W., LANGER, R., VACANTI, J., & HADLOCK, T. (2005). Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 26(27), 5454-5464. doi:10.1016/j.biomaterials.2005.02.004Deng, Y., Bi, X., Zhou, H., You, Z., Wang, Y., … Fan, X. (2014). Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. European Cells and Materials, 27, 13-25. doi:10.22203/ecm.v027a02Zhao, X., Wu, Y., Du, Y., Chen, X., Lei, B., Xue, Y., & Ma, P. X. (2015). A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, 3(16), 3222-3233. doi:10.1039/c4tb01693aZaky, S. H., Lee, K. W., Gao, J., Jensen, A., Verdelis, K., Wang, Y., … Sfeir, C. (2017). Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Acta Biomaterialia, 54, 95-106. doi:10.1016/j.actbio.2017.01.053Jeong, C. G., & Hollister, S. J. (2010). A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 31(15), 4304-4312. doi:10.1016/j.biomaterials.2010.01.145Kemppainen, J. M., & Hollister, S. J. (2010). Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A, 94A(1), 9-18. doi:10.1002/jbm.a.32653Sant, S., Hwang, C. M., Lee, S.-H., & Khademhosseini, A. (2011). Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Journal of Tissue Engineering and Regenerative Medicine, 5(4), 283-291. doi:10.1002/term.313Gao, J., Crapo, P. M., & Wang, Y. (2006). Macroporous Elastomeric Scaffolds with Extensive Micropores for Soft Tissue Engineering. Tissue Engineering, 12(4), 917-925. doi:10.1089/ten.2006.12.917Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids. doi:10.1017/cbo9781139878326Maliger, R., Halley, P. J., & Cooper-White, J. J. (2012). Poly(glycerol-sebacate) bioelastomers-kinetics of step-growth reactions using Fourier Transform (FT)-Raman spectroscopy. Journal of Applied Polymer Science, 127(5), 3980-3986. doi:10.1002/app.37719Ifkovits, J. L., Padera, R. F., & Burdick, J. A. (2008). Biodegradable and radically polymerized elastomers with enhanced processing capabilities. Biomedical Materials, 3(3), 034104. doi:10.1088/1748-6041/3/3/034104Chen, Q.-Z., Ishii, H., Thouas, G. A., Lyon, A. R., Wright, J. S., Blaker, J. J., … Harding, S. E. (2010). An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 31(14), 3885-3893. doi:10.1016/j.biomaterials.2010.01.10
    corecore