652 research outputs found

    Stability of Runge–Kutta methods for the alternately advanced and retarded differential equations with piecewise continuous arguments

    Get PDF
    AbstractThis paper deals with the numerical properties of Runge–Kutta methods for the solution of u′(t)=au(t)+a0u([t+12]). It is shown that the Runge–Kutta method can preserve the convergence order. The necessary and sufficient conditions under which the analytical stability region is contained in the numerical stability region are obtained. It is interesting that the θ-methods with 0⩽θ<12 are asymptotically stable. Some numerical experiments are given

    Low-temperature anomalous specific heat without tunneling modes: a simulation for a-Si with voids

    Full text link
    Using empirical potential molecular dynamics we compute dynamical matrix eigenvalues and eigenvectors for a 4096 atom model of amorphous silicon and a set of models with voids of different size based on it. This information is then employed to study the localization properties of the low-energy vibrational states, calculate the specific heat C(T) and examine the low-temperature properties of our models usually attributed to the presence of tunneling states in amorphous silicon. The results of our calculations for C(T) and "excess specific heat bulge" in the C(T)/T^3 vs. T graph for voidless a-Si appear to be in good agreement with experiment; moreover our investigation shows that the presence of localized low-energy excitations in the vibrational spectrum of our models with voids strongly manifests itself as a sharp peak in C(T)/T^3 dependence at T < 3K. To our knowledge this is the first numerical simulation that provides adequate agreement with experiment for the very low-temperature properties of specific heat in disordered systems within the limits of harmonic approximation.Comment: 5 pages with 2 ps figures, submitted to PR

    A comparison of different methods in the study of dynamical fluctuations in high energy e+e- collisions

    Get PDF
    Different methods in the study of anomalous scaling of factorial moments in high energy e+e- collisions are examined in some detail. It is shown that the horizontal and vertical factorial moments are equivalent only when they are used in combination with the cummulant variables. The influence of different reference frames and that of phase space restrictions is also discussed.Comment: 5 pages, 6 figure

    Location Awareness in Beyond 5G Networks

    Get PDF
    Location awareness is essential for enabling contextual services and for improving network management in 5th generation (5G) and beyond 5G (B5G) networks. This paper provides an overview of the expanding opportunities offered by location awareness in wireless networks, discusses soft information (SI)-based approaches for improved location awareness, and presents case studies in conformity to the 3rd Generation Partnership Project (3GPP) standardization by the European Telecommunications Standards Institute (ETSI). Results show that SI-based approaches can provide a new level of location awareness in 5G and B5G networks

    Electrical discharge machining of polycrystalline diamond using copper electrode – finishing condition

    Get PDF
    Research on machining process of Polycrystalline Diamond (PCD) is becoming important as the material was believed suitable to be used for cutting tools of advanced aeronautical structure. Electrical Discharge Machining (EDM) was regarded as the suitable method to machine PCD due its noncontact process nature. The objective of this research is to determine the influence of several EDM parameter such as sparking current, pulse duration, and pulse interval to the material removal rate and surface roughness of the machined PCD. Instead of significantly influenced the material removal rate, the sparking current was also highly influenced tha surface roughness. Highest material removal rate of approximately 0.005mm3/s was recorded by the EDM process with the highest current used of 5A, and lowest pulse interval of 1µs. The influence of pulse duration is not clearly seen at the lowest pulse interval used. On the other hand, 0.4µm was the lowest surface roughness value obtained in this research indicated by the highest sparking current, highest sparking duration and lowest sparking interval of 5A, 1µs and 1µs respectively

    Pulse Shape Discrimination Techniques in Scintillating CsI(Tl) Crystals

    Full text link
    There are recent interests with CsI(Tl) scintillating crystals for Dark Matter experiments. The key merit is the capability to differentiate nuclear recoil (nr) signatures from the background β/γ\beta / \gamma-events due to ambient radioactivity on the basis of their different pulse shapes. One of the major experimental challenges is to perform such pulse shape analysis in the statistics-limited domain where the light output is close to the detection threshold. Using data derived from measurements with low energy γ\gamma's and nuclear recoils due to neutron elastic scatterings, it was verified that the pulse shapes between β/γ\beta / \gamma-events are different. Several methods of pulse shape discrimination are studied, and their relative merits are compared. Full digitization of the pulse shapes is crucial to achieve good discrimination. Advanced software techniques with mean time, neural network and likelihood ratios give rise to satisfactory performance, and are superior to the conventional Double Charge method commonly applied at higher energies. Pulse shape discrimination becomes effective starting at a light yield of about 20 photo-electrons. This corresponds to a detection threshold of about 5 keV electron-equivalence energy, or 40-50 keV recoil kinetic energy, in realistic experiments.Comment: 20 pages, 7 figure

    Analysis and modeling of the root system architecture of winter wheat seedling

    Get PDF
    Plant root system plays an essential role in the acquisition of the edaphic resources, which are subject to local depletion. The size as well as the architecture of the root system determines the efficiency of the acquisition. In the present study, a stochastic model of plant root system architecture is formulated. The continuous growth and development of root system is described and modelled by stochastic processes (discrete events associated with a certain probability). The parameters of the model for each growth cycle include branching probability, w (rhythm ratio main axis vs. lateral roots), b (probability of growth) and c (probability of survival). Root segments were presented as connections of individual nodes. As root has no nodes in the sense of the botanical terms, an imaginary node with an elementary length is introduced. In order to obtain the parameters of the model, winter wheat seedlings were grown in a phytotron in sand culture watered by nutrient solution. Individual roots of 19-days-old se dlings were scanned and the images obtained were analysed with a root image-analysing software WinRhizo. Roots were clustered into 3 relatively homogeneous groups after an analysis of similarity according to 4 criteria: length of main axe, diameter of root apex of the main axe, lateral length density (total length of lateral roots per unit of main axe length), lateral root density (number of lateral roots per unit of main axe). In each root group, the parameters were fitted with a non-linear generalised least square method by comparing the theoretical length of root segments of various orders with the experimental data

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Electrode Polarization Effects in Broadband Dielectric Spectroscopy

    Get PDF
    In the present work, we provide broadband dielectric spectra showing strong electrode polarization effects for various materials, belonging to very different material classes. This includes both ionic and electronic conductors as, e.g., salt solutions, ionic liquids, human blood, and colossal-dielectric-constant materials. These data are intended to provide a broad data base enabling a critical test of the validity of phenomenological and microscopic models for electrode polarization. In the present work, the results are analyzed using a simple phenomenological equivalent-circuit description, involving a distributed parallel RC circuit element for the modeling of the weakly conducting regions close to the electrodes. Excellent fits of the experimental data are achieved in this way, demonstrating the universal applicability of this approach. In the investigated ionically conducting materials, we find the universal appearance of a second dispersion region due to electrode polarization, which is only revealed if measuring down to sufficiently low frequencies. This indicates the presence of a second charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form (see "Data Conservancy"

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
    corecore