693 research outputs found
Stability of Runge–Kutta methods for the alternately advanced and retarded differential equations with piecewise continuous arguments
AbstractThis paper deals with the numerical properties of Runge–Kutta methods for the solution of u′(t)=au(t)+a0u([t+12]). It is shown that the Runge–Kutta method can preserve the convergence order. The necessary and sufficient conditions under which the analytical stability region is contained in the numerical stability region are obtained. It is interesting that the θ-methods with 0⩽θ<12 are asymptotically stable. Some numerical experiments are given
Low-temperature anomalous specific heat without tunneling modes: a simulation for a-Si with voids
Using empirical potential molecular dynamics we compute dynamical matrix
eigenvalues and eigenvectors for a 4096 atom model of amorphous silicon and a
set of models with voids of different size based on it. This information is
then employed to study the localization properties of the low-energy
vibrational states, calculate the specific heat C(T) and examine the
low-temperature properties of our models usually attributed to the presence of
tunneling states in amorphous silicon. The results of our calculations for C(T)
and "excess specific heat bulge" in the C(T)/T^3 vs. T graph for voidless a-Si
appear to be in good agreement with experiment; moreover our investigation
shows that the presence of localized low-energy excitations in the vibrational
spectrum of our models with voids strongly manifests itself as a sharp peak in
C(T)/T^3 dependence at T < 3K. To our knowledge this is the first numerical
simulation that provides adequate agreement with experiment for the very
low-temperature properties of specific heat in disordered systems within the
limits of harmonic approximation.Comment: 5 pages with 2 ps figures, submitted to PR
A comparison of different methods in the study of dynamical fluctuations in high energy e+e- collisions
Different methods in the study of anomalous scaling of factorial moments in
high energy e+e- collisions are examined in some detail. It is shown that the
horizontal and vertical factorial moments are equivalent only when they are
used in combination with the cummulant variables. The influence of different
reference frames and that of phase space restrictions is also discussed.Comment: 5 pages, 6 figure
Location Awareness in Beyond 5G Networks
Location awareness is essential for enabling contextual
services and for improving network management in 5th
generation (5G) and beyond 5G (B5G) networks. This paper
provides an overview of the expanding opportunities offered
by location awareness in wireless networks, discusses soft information
(SI)-based approaches for improved location awareness,
and presents case studies in conformity to the 3rd Generation
Partnership Project (3GPP) standardization by the European
Telecommunications Standards Institute (ETSI). Results show
that SI-based approaches can provide a new level of location
awareness in 5G and B5G networks
Electrical discharge machining of polycrystalline diamond using copper electrode – finishing condition
Research on machining process of Polycrystalline Diamond (PCD) is becoming important as the material was believed suitable to be used for cutting tools of advanced aeronautical structure. Electrical Discharge Machining (EDM) was regarded as the suitable method to machine PCD due its noncontact process nature. The objective of this research is to determine the influence of several EDM parameter such as sparking current, pulse duration, and pulse interval to the material removal rate and surface roughness of the machined PCD. Instead of significantly influenced the material removal rate, the sparking current was also highly influenced tha surface roughness. Highest material removal rate of approximately 0.005mm3/s was recorded by the EDM process with the highest current used of 5A, and lowest pulse interval of 1µs. The influence of pulse duration is not clearly seen at the lowest pulse interval used. On the other hand, 0.4µm was the lowest surface roughness value obtained in this research indicated by the highest sparking current, highest sparking duration and lowest sparking interval of 5A, 1µs and 1µs respectively
Pulse Shape Discrimination Techniques in Scintillating CsI(Tl) Crystals
There are recent interests with CsI(Tl) scintillating crystals for Dark
Matter experiments. The key merit is the capability to differentiate nuclear
recoil (nr) signatures from the background -events due to
ambient radioactivity on the basis of their different pulse shapes. One of the
major experimental challenges is to perform such pulse shape analysis in the
statistics-limited domain where the light output is close to the detection
threshold. Using data derived from measurements with low energy 's and
nuclear recoils due to neutron elastic scatterings, it was verified that the
pulse shapes between -events are different. Several methods of
pulse shape discrimination are studied, and their relative merits are compared.
Full digitization of the pulse shapes is crucial to achieve good
discrimination. Advanced software techniques with mean time, neural network and
likelihood ratios give rise to satisfactory performance, and are superior to
the conventional Double Charge method commonly applied at higher energies.
Pulse shape discrimination becomes effective starting at a light yield of about
20 photo-electrons. This corresponds to a detection threshold of about 5 keV
electron-equivalence energy, or 4050 keV recoil kinetic energy, in realistic
experiments.Comment: 20 pages, 7 figure
Analysis and modeling of the root system architecture of winter wheat seedling
Plant root system plays an essential role in the acquisition of the edaphic resources, which are subject to local depletion. The size as well as the architecture of the root system determines the efficiency of the acquisition. In the present study, a stochastic model of plant root system architecture is formulated. The continuous growth and development of root system is described and modelled by stochastic processes (discrete events associated with a certain probability). The parameters of the model for each growth cycle include branching probability, w (rhythm ratio main axis vs. lateral roots), b (probability of growth) and c (probability of survival). Root segments were presented as connections of individual nodes. As root has no nodes in the sense of the botanical terms, an imaginary node with an elementary length is introduced. In order to obtain the parameters of the model, winter wheat seedlings were grown in a phytotron in sand culture watered by nutrient solution. Individual roots of 19-days-old se dlings were scanned and the images obtained were analysed with a root image-analysing software WinRhizo. Roots were clustered into 3 relatively homogeneous groups after an analysis of similarity according to 4 criteria: length of main axe, diameter of root apex of the main axe, lateral length density (total length of lateral roots per unit of main axe length), lateral root density (number of lateral roots per unit of main axe). In each root group, the parameters were fitted with a non-linear generalised least square method by comparing the theoretical length of root segments of various orders with the experimental data
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Electrode Polarization Effects in Broadband Dielectric Spectroscopy
In the present work, we provide broadband dielectric spectra showing strong
electrode polarization effects for various materials, belonging to very
different material classes. This includes both ionic and electronic conductors
as, e.g., salt solutions, ionic liquids, human blood, and
colossal-dielectric-constant materials. These data are intended to provide a
broad data base enabling a critical test of the validity of phenomenological
and microscopic models for electrode polarization. In the present work, the
results are analyzed using a simple phenomenological equivalent-circuit
description, involving a distributed parallel RC circuit element for the
modeling of the weakly conducting regions close to the electrodes. Excellent
fits of the experimental data are achieved in this way, demonstrating the
universal applicability of this approach. In the investigated ionically
conducting materials, we find the universal appearance of a second dispersion
region due to electrode polarization, which is only revealed if measuring down
to sufficiently low frequencies. This indicates the presence of a second
charge-transport process in ionic conductors with blocking electrodes.Comment: 9 pages, 6 figures, experimental data are provided in electronic form
(see "Data Conservancy"
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe
- …