47 research outputs found
Opening-closing dynamics of the mitochondrial transcription pre-initiation complex
Promoter recognition and local melting of DNA are key steps of transcription initiation catalyzed by RNA polymerase and initiation factors. From single molecule fluorescence resonance energy transfer studies of the yeast (Saccharomyces cerevisiae) mitochondrial RNA polymerase Rpo41 and its transcription factor Mtf1, we show that the pre-initiation complex is highly dynamic and undergoes repetitive opening-closing transitions that are modulated by Mtf1 and ATP. We found that Rpo41 alone has the intrinsic ability to bend the promoter but only very briefly. Mtf1 enhances bending/opening transition and suppresses closing transition, indicating its dual roles of nucleating promoter opening and stabilizing the open state. The cognate initiating ATP prolongs the lifetime of the open state, plausibly explaining the 'ATP sensing mechanism' suggested for the system. We discovered short-lived opening trials upon initial binding of Rpo41-Mtf1 before the establishment of the opening/closing equilibrium, which may aid in promoter selection before the formation of stable pre-initiation complex. The dynamics of open complex formation provides unique insights into the interplay between RNA polymerase and transcription factors in regulating initiation.open4
Maintenance of respiratory chain function in mouse hearts with severely impaired mtDNA transcription
The basal mitochondrial transcription machinery is essential for biogenesis of the respiratory chain and consists of mitochondrial RNA polymerase, mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2. This triad of proteins is sufficient and necessary for mtDNA transcription initiation. Abolished mtDNA transcription caused by tissue-specific knockout of TFAM in the mouse heart leads to early onset of a severe mitochondrial cardiomyopathy with lethality within the first post-natal weeks. Here, we describe a mouse model expressing human TFAM instead of the endogenous mouse TFAM in heart. These rescue mice have severe reduction in mtDNA transcription initiation, but, surprisingly, are healthy at the age of 52 weeks with near-normal steady-state levels of transcripts. In addition, we demonstrate that heavy-strand mtDNA transcription normally terminates at the termination-associated sequence in the control region. This termination is abolished in rescue animals resulting in heavy (H)-strand transcription of the entire control region. In conclusion, we demonstrate here the existence of an unexpected mtDNA transcript stabilization mechanism that almost completely compensates for the severely reduced transcription initiation in rescue hearts. Future elucidation of the underlying molecular mechanism may provide a novel pathway to treat mitochondrial dysfunction in human pathology
A novel function of the mitochondrial transcription factor Mtf1 in fission yeast; Mtf1 regulates the nuclear transcription of srk1
In eukaryotic cells, Mtf1 and its homologues function as mitochondrial transcription factors for the mitochondrial RNA polymerase in the mitochondrion. Here we show that in fission yeast Mtf1 exerts a non-mitochondrial function as a nuclear factor that regulates transcription of srk1, which is a kinase involved in the stress response and cell cycle progression. We first found Mtf1 expression in the nucleus. A ChIP-chip approach identified srk1 as a putative Mtf1 target gene. Over expression of Mtf1 induced transcription of the srk1 gene and Mtf1 deletion led to a reduction in transcription of the srk1 gene in vivo. Mtf1 overexpression causes cell elongation in a srk1 dependent manner. Mtf1 overexpression can cause cytoplasmic accumulation of Cdc25. We also provide biochemical evidence that Mtf1 binds to the upstream sequence of srk1. This is the first evidence that a mitochondrial transcription factor Mtf1 can regulate a nuclear gene. Mtf1 may also have a role in cell cycle progression
Identification and characterization of the mitochondrial RNA polymerase and transcription factor in the fission yeast Schizosaccharomyces pombe
We have characterized the mitochondrial transcription factor (Mtf1) and RNA polymerase (Rpo41) of Schizosaccharomyces pombe. Deletion mutants show Mtf1 or Rpo41 to be essential for cell growth, cell morphology and mitochondrial membrane potential. Overexpression of Mtf1 and Rpo41 can induce mitochondrial transcription. Mtf1 and Rpo41 can bind and transcribe mitochondrial promoters in vitro and the initiating nucleotides were the same in vivo and in vitro. Mtf1 is required for efficient transcription. We discuss the functional differences between Mtf1 and Rpo41 of S. pombe with Saccharomyces cerevisiae and higher organisms. In contrast to S. cerevisiae, the established model for mitochondrial transcription, S. pombe, a petite-negative yeast, resembles higher organisms that cannot tolerate the loss of mitochondrial function. The S. pombe and human mitochondrial genomes are similar in size and much smaller than that of S. cerevisiae. This is an important first step in the development of S. pombe as an alternative and complementary model system for molecular genetic and biochemical studies of mitochondrial transcription and mitochondrial–nuclear interactions. This is the first systematic study of the cellular function and biochemistry of Rpo41 and Mtf1 in S. pombe
Structure of human mitochondrial RNA polymerase
Transcription of the mitochondrial genome is performed by a single-subunit RNA polymerase (mtRNAP) that is distantly related to the RNAP of bacteriophage T7, the pol I family of DNA polymerases, and single-subunit RNAPs from chloroplasts1, 2, 3, 4. Whereas T7 RNAP can initiate transcription by itself, mtRNAP requires the factors TFAM and TFB2M for binding and melting promoter DNA5, 6, 7. TFAM is an abundant protein that binds and bends promoter DNA 15–40 base pairs upstream of the transcription start site, and stimulates the recruitment of mtRNAP and TFB2M to the promoter8, 9. TFB2M assists mtRNAP in promoter melting and reaches the active site of mtRNAP to interact with the first base pair of the RNA–DNA hybrid10. Here we report the X-ray structure of human mtRNAP at 2.5 Å resolution, which reveals a T7-like catalytic carboxy-terminal domain, an amino-terminal domain that remotely resembles the T7 promoter-binding domain, a novel pentatricopeptide repeat domain, and a flexible N-terminal extension. The pentatricopeptide repeat domain sequesters an AT-rich recognition loop, which binds promoter DNA in T7 RNAP, probably explaining the need for TFAM during promoter binding. Consistent with this, substitution of a conserved arginine residue in the AT-rich recognition loop, or release of this loop by deletion of the N-terminal part of mtRNAP, had no effect on transcription. The fingers domain and the intercalating hairpin, which melts DNA in phage RNAPs, are repositioned, explaining the need for TFB2M during promoter melting. Our results provide a new venue for the mechanistic analysis of mitochondrial transcription. They also indicate how an early phage-like mtRNAP lost functions in promoter binding and melting, which were provided by initiation factors in trans during evolution, to enable mitochondrial gene regulation and the adaptation of mitochondrial function to changes in the environment