25 research outputs found

    Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting

    Get PDF
    ObjectiveMulti-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease.Study designrWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care.ResultsA total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing.ConclusionsOur study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results

    Kinetic properties and small-molecule inhibition of human myosin-6.

    Get PDF
    Myosin-6 is an actin-based motor protein that moves its cargo towards the minus-end of actin filaments. Mutations in the gene encoding the myosin-6 heavy chain and changes in the cellular abundance of the protein have been linked to hypertrophic cardiomyopathy, neurodegenerative diseases, and cancer. Here, we present a detailed kinetic characterization of the human myosin-6 motor domain, describe the effect of 2,4,6-triiodophenol on the interaction of myosin-6 with F-actin and nucleotides, and show how addition of the drug reduces the number of myosin-6-dependent vesicle fusion events at the plasma membrane during constitutive secretion

    Synchronizing chromosome segregation by flux-dependent force equalization at kinetochores

    Get PDF
    The synchronous movement of chromosomes during anaphase ensures their correct inheritance in every cell division. This reflects the uniformity of spindle forces acting on chromosomes and their simultaneous entry into anaphase. Although anaphase onset is controlled by the spindle assembly checkpoint, it remains unknown how spindle forces are uniformly distributed among different chromosomes. In this paper, we show that tension uniformity at metaphase kinetochores and subsequent anaphase synchrony in Drosophila S2 cells are promoted by spindle microtubule flux. These results can be explained by a mechanical model of the spindle where microtubule poleward translocation events associated with flux reflect relaxation of the kinetochore–microtubule interface, which accounts for the redistribution and convergence of kinetochore tensions in a timescale comparable to typical metaphase duration. As predicted by the model, experimental acceleration of mitosis precludes tension equalization and anaphase synchrony. We propose that flux-dependent equalization of kinetochore tensions ensures a timely and uniform maturation of kinetochore–microtubule interfaces necessary for error-free and coordinated segregation of chromosomes in anaphase

    Membrane tension controls adhesion positioning at the leading edge of cells

    Get PDF
    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells

    The evaluation of a practice change to reduce the risk of type 2 diabetes in a rural primary care practice

    Get PDF
    Diabetes mellitus is a growing problem in the United States as well as worldwide. Research has shown that the onset of type 2 diabetes mellitus can be delayed or prevented with lifestyle modifications. One primary care clinic initiated and evaluated a practice change to provide an educational program to at-risk patients to reduce the risk for developing type 2 diabetes mellitus. Three educational sessions followed by bi-weekly telephone contact was provided to participants. The aim was to reduce parameters placing participants at risk including weight and fasting blood glucose as well as increasing the self efficacy of participants to make lifestyle changes. Statistically significant changes were seen in reductions of weight, body mass index, and fasting blood glucose as well as increases in some measures of self efficacy. The evaluation of the practice change supports the continuation of this program to the primary care population

    Table3_Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting.xlsx

    No full text
    ObjectiveMulti-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease.Study designrWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care.ResultsA total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing.ConclusionsOur study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results.</p

    Table6_Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting.xlsx

    No full text
    ObjectiveMulti-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease.Study designrWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care.ResultsA total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing.ConclusionsOur study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results.</p

    Table4_Multi-center implementation of rapid whole genome sequencing provides additional evidence of its utility in the pediatric inpatient setting.xlsx

    No full text
    ObjectiveMulti-center implementation of rapid whole genome sequencing with assessment of the clinical utility of rapid whole genome sequencing (rWGS), including positive, negative and uncertain results, in admitted infants with a suspected genetic disease.Study designrWGS tests were ordered at eight hospitals between November 2017 and April 2020. Investigators completed a survey of demographic data, Human Phenotype Ontology (HPO) terms, test results and impacts of results on clinical care.ResultsA total of 188 patients, on general hospital floors and intensive care unit (ICU) settings, underwent rWGS testing. Racial and ethnic characteristics of the tested infants were broadly representative of births in the country at large. 35% of infants received a diagnostic result in a median of 6 days. The most common HPO terms for tested infants indicated an abnormality of the nervous system, followed by the cardiovascular system, the digestive system, the respiratory system and the head and neck. Providers indicated a major change in clinical management because of rWGS for 32% of infants tested overall and 70% of those with a diagnostic result. Also, 7% of infants with a negative rWGS result and 23% with a variant of unknown significance (VUS) had a major change in management due to testing.ConclusionsOur study demonstrates that the implementation of rWGS is feasible across diverse institutions, and provides additional evidence to support the clinical utility of rWGS in a demographically representative sample of admitted infants and includes assessment of the clinical impact of uncertain rWGS results in addition to both positive and negative results.</p
    corecore