12 research outputs found

    Skeletal Muscle PGC-1β Signaling is Sufficient to Drive an Endurance Exercise Phenotype and to Counteract Components of Detraining in Mice

    Get PDF
    Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy

    Sociodemographic and Disease Correlates of Body Image Distress among Patients with Systemic Sclerosis

    Get PDF
    Body image concerns are infrequently studied in systemic sclerosis (SSc), even though significant visible disfigurement is common. The objective of this study was to identify sociodemographic and disease-related correlates of dissatisfaction with appearance and social discomfort among people with SSc.SSc patients came from the 15-center Canadian Scleroderma Research Group Registry. Sociodemographic information was based on patient self-report. Disease characteristics were obtained via physician examinations. The Brief-SWAP was used to assess dissatisfaction with appearance and social discomfort. Structural equation models were conducted with MPlus to determine the relationship of dissatisfaction with appearance and social discomfort with age, sex, education, marital status, race/ethnicity, disease duration, skin involvement, telangiectasias, skin pigmentation changes, and hand contractures.A total of 489 SSc patients (432 female, 57 male) were included. Extent of skin involvement was significantly associated with both dissatisfaction with appearance and social discomfort (standardized regression coefficients = 0.02, p = 0.001; 0.02, p = 0.020, respectively), as was skin involvement in the face (0.18, p = 0.016; 0.23, p = 0.006, respectively). Greater social discomfort was robustly associated with younger age (-0.017, p<0.001) and upper-body telangiectasias (0.32, p = 0.021). Dissatisfaction with appearance was associated with hand contractures (0.07, p = 0.036).This study found that dissatisfaction with appearance and social discomfort were associated with numerous disfiguring characteristics of SSc, in addition to age. These results underline that there are multiple factors contributing to body image distress in SSc, as well as the need to attend to both disease and social contexts in understanding the impact of disfigurement among patients

    Vital roles of nurses and midwives in the Western Pacific Region

    Full text link

    The outcome of T-cell costimulation through intercellular adhesion molecule-1 differs from costimulation through leucocyte function-associated antigen-1

    No full text
    Optimal T-cell activation requires both an antigen-specific and a costimulatory signal. The outcome of T-cell activation can be influenced by the nature of the costimulatory signal the T cell receives. We recently demonstrated the ability of stimulation through intercellular adhesion molecule-1 (ICAM-1), resident on the T-cell surface, to provide a second signal for T-cell activation, and have extended that work here to begin an examination of the functional outcome of this set of signals. Costimulation through ICAM-1 resulted in a greater percentage of cells having undergone more than three divisions when compared to costimulation through leucocyte function-associated antigen-1 (LFA-1). Costimulation through ICAM-1 also had an effect similar to costimulation through CD28 in its ability to down-regulate the cyclin dependent kinase inhibitor p27(kip1). Costimulation through ICAM-1 provided greater protection from apoptosis than costimulation through LFA-1, especially in cells having divided more than three times. This was supported by the ability of costimulation through ICAM-1 to up-regulate the anti-apoptotic protein Bcl-2. Finally, costimulation through ICAM-1 or CD28 produced a greater number of T cells with a memory phenotype than costimulation through LFA-1
    corecore