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Abstract 
Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master 
transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing 
muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific 
transgenic overexpression of PGC-1β affects the detraining response following endurance training. 
First, we established and validated a mouse exercise-training-detraining protocol. Second, using 
multiple physiological and gene expression end points, we found that PGC-1β overexpression in 
skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β 
overexpression during the detraining period resulted in partial prevention of the detraining response. 
Specifically, an increase in the plateau at which O2 uptake (V�o2) did not change from baseline with 
increasing treadmill speed [peak V�o2 (ΔV�o2max)] was maintained in trained mice with PGC-1β 
overexpression in muscle 6 wk after cessation of training. However, other detraining responses, 
including changes in running performance and in situ half relaxation time (a measure of contractility), 
were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is 
sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the 
detraining response following exercise training, suggesting that the process of endurance detraining 
involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance 
fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-
concept interventions in preclinical models of muscle disuse atrophy. 

Skeletal muscle endurance and resistance to fatigue are determined by a variety of factors, including 
the capacity to store and oxidize high-energy fuels, cardiovascular capacity, and the proportion of 
oxidative slow-twitch, insulin-sensitive fibers needed for persistent mechanical function. Muscle 
detraining occurs with periods of reduced ambulation or complete immobilization, such as during 



recuperation from acute injuries or illness. The detraining response is manifest as reduced muscle 
performance associated with a diminution of mitochondrial functional capacity, reduced blood vessel 
density, reduction in the proportion of oxidative muscle fibers, and relative insulin resistance 
(1, 5, 29, 40). The detrained state increases injury recovery time and enhances the risk of subsequent 
injury or concurrent illness/infection (12). In addition, sarcopenia may synergize with untrained or 
detrained states, often leading to “failure-to-thrive” syndrome in the elderly, a condition with 
significant morbidity and mortality rates (8). Detraining effects are prevalent in highly trained 
individuals, and the magnitude of the detraining response is dramatic in this highly fit population. 
Moreover, athletes and other highly trained individuals, such as infantry soldiers, could be susceptible 
to reinjury or new injuries, such as muscle tears, tendonitis, and even skeletal fractures, when 
remobilizing from the detrained state (20, 28). 

Delineation of the molecular and cellular events involved in the muscle-detraining response requires 
insight into the training process. Endurance training triggers a variety of adaptive responses in muscle, 
including marked increases in mitochondrial content, vascularity, and proportion of oxidative muscle 
fibers, all of which are rapidly reversed following cessation of training (42, 54). Whole body insulin 
sensitivity and insulin-stimulated glucose transport are also significantly positively correlated with the 
trained state, related, at least in part, to the increase in proportion of oxidative fibers, which are highly 
insulin-responsive (13, 24, 34, 41, 48). The increase in muscle mitochondrial content with endurance 
training increases capacity for oxidation of fatty acids and glucose for ATP production (23, 25). Training 
also increases capacity for delivery of O2 and nutrients through effects on cardiac output and by 
triggering an angiogenic response. Conversely, the detraining response results in a rapid reversal of 
these adaptive training responses in muscle, including oxidative fibers, mitochondrial content, 
vascularity, and, thus, capacity for muscle fuel oxidation (46, 54). The muscle-detraining response 
begins within 7 days after cessation of training (11, 26, 37). An important question relates to whether 
muscle detraining represents a simple reversal of the training process or also involves independent 
mechanisms. The answer to this key question has implications for the development of therapeutic 
strategies to prevent muscle detraining during periods of immobilization. 

Significant advances have been made in identifying critical upstream regulators of the muscle 
endurance-training response. Specifically, the muscle-enriched transcriptional coactivators peroxisome 
proliferator-activated receptor-γ (PPARγ) coactivator (PGC)-1α and -1β have been shown to activate 
features of endurance training in skeletal muscle in transgenic mice (3, 4, 22, 32, 33, 35). The PGC-1 
isoforms are known to be necessary for development of high-capacity mitochondrial systems in heart 
and skeletal muscle (15, 30, 38). PGC-1α gene expression is induced in skeletal muscle in physiological 
conditions that demand increased energy expenditure, such as short- and long-term exercise in animal 
models and in humans (7, 15, 21, 31, 43, 52). Tissue-specific transgenic approaches in mice have shown 
that forced overexpression of PGC-1 coactivators in skeletal muscle increases muscle oxidative capacity 
and the proportions of oxidative fibers (35). Notably, transgenic strategies have shown that PGC-1β 
coordinately drives formation of muscle oxidative fibers (4) and stimulates angiogenesis (44) in mice. 
Mouse PGC-1α and -1β transgenic and gene deletion studies have also demonstrated the important 
role of these factors in maintaining mitochondrial function (53) and defending against inflammation 
(14) and oxidative damage (17). 
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The objectives of this study were severalfold. 1) It was necessary to establish a protocol that allows in-
depth analysis of the physiological, cellular, and molecular responses to muscle detraining in mice. 2) 
We sought to further explore the role of PGC-1β in the muscle endurance phenotype. We chose to 
focus on PGC-1β, given that this transcriptional coregulator has been shown to trigger multiple 
components of the endurance fitness response, including energy metabolism, angiogenesis, and fiber 
type shifts (4, 44). In addition, less is known about the role of PGC-1β than PGC-1α in regulating 
physiological responses. 3) We sought to determine whether maintenance of the PGC-1β-induced 
trained state impacts the muscle-detraining response following cessation of an endurance-training 
regimen. To accomplish these goals, we employed a conditional mouse transgenic line that allows 
muscle-specific induction of PGC-1β. We found that forced expression of PGC-1β in muscle was 
sufficient to fully activate the endurance-training response in sedentary mice. However, only a subset 
of the detraining responses was prevented by PGC-1β overexpression during the period of detraining 
following cessation of exercise, suggesting that other mechanisms, possibly including factors external 
to muscle, are at play. The protocol described here should be useful for preclinical assessment of the 
impact of various interventions on specific components of the muscle-detraining response. 

METHODS 
Transgenic mice. 
Animal studies were conducted in strict accordance with National Institutes of Health guidelines for 
humane treatment of animals. Transgenic mice expressing a muscle-specific tetracycline-regulatable 
transactivator (tTA) driven by the muscle creatine kinase promoter (MCK-tTA) are described elsewhere 
(19). To create the PGC-1β transgene, mouse PGC-1β cDNA with an NH2-terminal flag tag was inserted 
into the pTRE2 vector (Clontech). This construct was linearized with AatII and AseI and injected into 
fertilized mouse eggs to generate the tetracycline response element (TRE)-PGC-1β lines. Mice carrying 
the transgene were identified by a transgene-specific PCR assay. These two strains, both in the FVB/N 
genetic background, were crossed to generate double-transgenic [Tet-off PGC-1β, or TRE-PGC-1β(+)] 
mice. Breeding pairs and offspring were maintained on chow containing doxycycline (200 mg/kg; 
Research Diet, Brunswick, NJ). To activate the TRE-PGC-1β transgene, doxycycline-containing chow was 
removed and replaced with standard chow (diet 2916, Teklad), which removes suppression from the 
TRE that drives expression of PGC-1β. All animal experiments and euthanasia protocols were 
conducted in accordance with National Institutes of Health guidelines for humane treatment of 
laboratory animals and were reviewed and approved by the Animal Care Committee of Sanford 
Burnham Prebys Medical Discovery Institute at Lake Nona. 

Experimental design. 
To determine whether PGC-1β attenuates the effects of detraining, the following experimental design 
was employed (Fig. 1). From birth, mice were maintained on doxycycline-containing chow to inactivate 
the TRE (51). At 8 wk of age, body composition of male FVB/N TRE-PGC-1β(−) and TRE-PGC-1β(+) mice 
(each with 1 copy of the MCK-rtTA allele) was determined by NMR (MiniSpec, Brucker, The Woodlands, 
TX), and maximal O2uptake (V�o2max) studies were performed. Mice were divided into two groups: 
Sedentary and Runner. The Runner mice were singly housed with a Kay-tee Run-Around Mini Exercise 
running wheel (4.5 inch) for 8 wk. The Sedentary mice were housed according to normal procedure. At 
2 wk before the wheel was removed from the cage, doxycycline-containing chow was replaced with 
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standard chow (Teklad Diet 2916) to induce PGC-1β expression in the TRE-PGC-1β(+) mice (Fig. 1). At 2, 
4, 6, and 8 wk following doxycycline removal, NMR and V�o2max studies were repeated. Tissue was 
harvested for gene expression analysis 2 days after the final V�o2max study. 

 
Fig. 1. Longitudinal study timeline. Mice were segregated into Sedentary and Runner groups and harvested 8 wk after 
training (Trained) or 6 wk after detraining (Detrained). Running wheels were added to cages of Runner mice (singly housed) 
at 8 wk of age. All cages were maintained on doxycycline-containing chow to suppress induction of peroxisome proliferator-
activated receptor-γ coactivator (PGC)-1β. Doxycycline was removed 2 wk before the start of detraining to induce 
expression of PGC-1β before removal of the running wheels, which occurred 8 wk after the wheels were added to the 
cages. 
 

Mitochondrial respiration studies. 
Complex II-supported mitochondrial respiration was assessed in saponin-skinned permeabilized soleus 
fibers with succinate as substrate and in the presence of rotenone, as previously described (33, 45). 
Briefly, 8- to 16-wk-old male Sedentary and Runner mice were anesthetized, and soleus fibers were 
separated and transferred to a buffer [in mM: 2.77 K2Ca-EGTA, 7.23 K2EGTA, 6.56 MgCl2, 20 imidazole, 
53.3 K-MES, 20 taurine, 5.3 ATP, 15 PCr, 3 KH2PO4, and 0.5 DTT (pH 7.1)] supplemented with 50 μg/ml 
saponin and permeabilized for 30 min at 4°C with gentle stirring. Fibers were then washed twice for 10 
min each in buffer containing 2.77 mM K2Ca-EGTA, 7.23 mM K2EGTA, 1.38 mM MgCl2, 20 mM 
imidazole, 100 mM K-MES, 20 mM taurine, 3 mM KH2PO4, 0.5 mM DTT, and 2 mg/ml BSA (pH 7.1). 
Respiration was measured at 37°C using an optical probe (Oxygen FOXY Probe, Ocean Optics, Dunedin, 
FL). After measurement of basal state 2 respiration, ADP-stimulated state 3 respiration was 
determined by exposure of fibers to 1 mM ADP. State 4 respiration was evaluated following addition of 
oligomycin (1 μg/ml). Solubility of O2 in the respiration buffer at 25°C was taken as 246.87 nmol O2/ml. 
Respiration rates were expressed as nmol O2·min−1·mg dry wt−1. 

Exercise studies and V�o2max testing. 
Mice were acclimated (run for 9 min at 10 m/min followed by 1 min at 20 m/min) to the treadmill for 2 
consecutive days before the experimental protocol. 

For the low-intensity distance-to-exhaustion protocol, fed mice were run on a 5% slope for 10 min at 
10 m/min followed by an increase of 2 m/min for 15 min and every 15 min thereafter, not exceeding 
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36 m/min, until exhaustion (5 consecutive seconds on the shock grid). The high-intensity distance-to-
exhaustion protocol was performed in conjunction with the V�o2max studies described below. 

The plateau at which change from the average baseline V�o2 (ΔV�o2) did not change with increasing 
treadmill speed [peak V�o2 (ΔV�o2max)] and respiratory exchange ratio (RER) were determined as 
described previously (6, 9). Briefly, 2- to 6-mo-old male mice were placed in an enclosed treadmill 
attached to the Comprehensive Laboratory Animal Monitoring System (CLAMS, Columbus Instruments) 
and allowed to acclimate for 30 min at a 0° incline and 0 m/min. A baseline V�o2 was calculated as the 
average of V�o2 values during the last 5 min of the acclimation period. The mice were then challenged 
with intervals of increasing speed (4 m/min every 3 min). A shock grid was used to encourage the mice 
to run. V�o2 was measured every minute before the exercise challenge, throughout the challenge, and 
following exhaustion. High-intensity distance to exhaustion was calculated from the same study. 

Histological analyses and electron microscopy. 
Mouse gastrocnemius was collected, immersed in gum tragacanth-phenol, and frozen on an 
embedding block (catalog no. 6755810, Fisher Scientific) with isopentane that had been cooled in 
liquid nitrogen. CD31 staining was visualized using chromogenic 3,3′-diaminobenzidine. Samples on 
frozen slides were fixed in 10% neutral buffered formalin for 15 min, washed in water, and placed on 
the Discovery XT instrument (Ventana Medical Instruments). CD31 antibody (catalog no. DIA-310 clone 
SZ31, Dianova) was used at a 1:25 dilution for 1 h. Muscles for myosin heavy chain (MHC) 
immunofluorescence analysis were embedded as noted above, and immunofluorescence was 
performed as described previously (50). The fibers were stained using antibodies from the 
Developmental Studies Hybridoma Bank: MHC1, yellow (antibody BA-F8); MHC2a, red (antibody SC-
71); MHC2x, black (unstained); and MHC2b, green (antibody BF-F3). After the slides were stained, they 
were scanned on the Aperio ScanScope XT. 

Electron microscopy was performed on soleus muscle rapidly fixed with Karnovsky’s fixative (2% 
glutaraldehyde, 1% paraformaldehyde, and 0.08% sodium cacodylate), as previously described (53). 
Sectioning was performed by the Histology Core Facility at Sanford Burnham Prebys Medical Discovery 
Institute at Lake Nona, and the images were visualized on a Philips FEI Morgagni transmission electron 
microscope (Sanford Burnham Prebys Imaging Core Facility). 

RNA and genomic DNA analyses. 
Total RNA was isolated from mouse skeletal muscle using the RNAzol method (Tel-Test, Friendswood, 
TX). Real-time quantitative RT-PCR was performed using the Stratagene MX3005P detection system, 
and reagents were supplied by Stratagene. Arbitrary units of target mRNA were corrected to 
expression of ribosomal protein lateral stalk subunit P0 (Rplp0, 36B4). Specific oligonucleotide primers 
for target gene sequences are as follows: 5′-CAAGCAGCAACATGGGAAGA-3′ (forward) and 5′-
GTCAGGATCAAGAACCGAAGTCT-3′ (reverse) for citrate synthase (Cs), 5′-GTCTGTCTTCGAGTCCGAACG-3′ 
(forward) and 5′-GGAGATTTGGTCCAGTCTTATGC-3′ (reverse) for cytochrome c (Cycs), 5′-
CGTGAGGGCAATGATTTATACCAT-3′ (forward) and 5′-TCCTGGTCTCTGAAGTATTCAGCAA-3′ (reverse) for 
ATP synthase-β (Atp5b), 5′-TGCCTACGAGGTGATCAAGCT-3′ (forward) and 5′-
GCACCCGCCTAAGGTTCTTC-3′ (reverse) for lactate dehydrogenase A (Ldha), 5′-
AGTCTCCCGTGCATCCTCAA-3′ (forward) and 5′-AGGGTGTCCGCACTCTTCCT-3′ (reverse) for lactate 

https://0-www-physiology-org.libus.csd.mu.edu/doi/full/10.1152/ajpendo.00380.2016#B6
https://0-www-physiology-org.libus.csd.mu.edu/doi/full/10.1152/ajpendo.00380.2016#B9
https://0-www-physiology-org.libus.csd.mu.edu/doi/full/10.1152/ajpendo.00380.2016#B50
https://0-www-physiology-org.libus.csd.mu.edu/doi/full/10.1152/ajpendo.00380.2016#B53


dehydrogenase B (Ldhb), 5′-CCCATGGCATTAGCCTCTTT-3′ (forward) and 5′-GCTGTGTCCTGAGCTTTCAT-
3′ (reverse) for long-chain acyl-CoA dehydrogenase (Acadl), 5′-AGGCTTGGAAAAATCTGTCTC-3′ 
(forward) and 5′-TGCTCTTCCCAAGACTTCATT-3′ (reverse) for mitochondrial transcription factor A 
(Tfam), 5′-TCCAGAAGTCAGCGGCCTTGTGTCA-3′ (forward) and 5′-CTCTGGGACAGGGCAGCACCGA-3′ 
(reverse) for PGC-1β (Ppargc1b), 5′-CTCGGCGCTGACTCCG-3′ (forward) and 5′-
CACACAGCTGTTCCTCTCCAG-3′ (reverse) for Ppargc1b (endogenous only), 5′-
AGCAAGAAGAGCATCTGTGGG-3′ (forward) and 5′-ACCCTGCGTGTCAGAGAGATA-3′ (reverse) 
for Ppargc1b (trangene only), 5′-CGGAAATCATATCCAACCAG-3′ (forward) and 5′-
TGAGAACCGCTAGCAAGTTTG-3′ (reverse) for PGC-1α (Ppargc1a), 5′-ACCAGAACACACGCTTCCTT-3′ 
(forward) and 5′-CCCATCACAGCCCATCTG-3′ (reverse) for PPAR-δ (Ppard), 5′-AGGAGTACGTCCTGCTG-3′ 
(forward) and 5′-CCTCAGCATCTTCAATG-3′ (reverse) for estrogen-related receptor (EsRR)-α (Esrra), 5′-
ACGGCTGGATTCGGAGAAC-3′ (forward) and 5′-TCCTGCTCAACCCCTAGTAGATTC-3′ (reverse) for EsRR-β 
(Esrrb), 5′-TGACTTGGCTGACCGAG-3′ (forward) and 5′-CCGAGGATCAGAATCTCC-3′ (reverse) for EsRR-γ 
(Esrrg), 5′-GGCAGCAGCAGCTGCGGAAGCAGAGTCTGG-3′ (forward) and 5′-
GAGTGCTCCTCAGATTGGTCATTAGC-3′ (reverse) for MHC2x (Myh1), 5′-
GCCAACTATGCTGGAGCTGATGCCC-3′ (forward) and 5′-GGTGCGTGGAGCGCAAGTTTGTCATAAG-3′ 
(reverse) for MHC1 (Myh7), 5′-GGCACAAACTGCTGAAGCAGAGGC-3′ (forward) and 5′-
GGTGCTCCTGAGGTTGGTCATCAGC-3′ (reverse) for MHC2a (Myh2), 5′-
GAGCTACTGGATGCCAGTGAGCGC-3′ (forward) and 5′-CTGGACGATGTCTTCCATCTCTCC-3′ (reverse) for 
MHC2b (Myh4), 5′-CTGCAGGCATCGGCAAA-3′ (forward) and 5′-GCATTTCGCACACCTGGAT-3′ (reverse) 
for platelet and endothelial cell adhesion molecule 1 (Pecam-1, CD31), and 5′-
TGGAAGTCCAACTACTTCCTCAA-3′ (forward) and 5′-ATCTGCTGCATCTGCTTGGAG-3′ (reverse) 
for Rplp0 (36B4). 

Genomic/mitochondrial DNA (mtDNA) was isolated using the RNAzol method followed by 
backextraction with 4 M guanidine thiocyanate, 50 mM sodium citrate, and 1 M Tris and an alcohol 
precipitation. The mtDNA content was determined by SYBR Green analysis (Stratagene). The levels of 
NADH dehydrogenase subunit 1 (Nd1, mtDNA) were normalized to the levels of lipoprotein lipase (Lpl, 
genomic DNA). The primer sequences are as follows: 5′-CCCATTCGCGTTATTCTT-3′ (forward) and 5′-
AAGTTGATCGTAACGGAAGC-3′ (reverse) for Nd1 and 5′-GGATGGACGGTAAGAGTGATTC-3′ (forward) 
and 5′-ATCCAAGGGTAGCAGACAGGT-3′ (reverse) for Lpl. 

Antibodies and Western immunoblot studies. 
Antibody directed against PGC-1β was generously provided by Anastasia Kralli (Scripps). 

Western immunoblot studies were performed with whole gastrocnemius muscle lysates. Briefly, after 
gastrocnemius muscle was sonicated in RIPA buffer [1% NP40, 0.5% SDS, 100 mM 
phenylmethylsulfonyl fluoride, and cOmplete protease inhibitors (Roche)] on ice using a Branson 
Sonifier 450 with 50% duty cycle, insoluble cellular debris was removed by centrifugation (15,000 g). 
Protein was quantified using the Pierce Protein Determination Kit (bicinchoninic acid method). Lysate 
was run on a 7.5% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. The 
membranes were blocked with 5% nonfat dry milk for 1 h at room temperature and then probed with 
primary antibody for PGC-1β diluted 1:10,000 in 1% BSA with 0.1% Tween 20. The membranes were 
washed three times for 10 min each in 0.1% Tween in Tris-buffered saline and then probed with goat 



anti-rabbit IRDye 800CW (1:8,000 dilution; catalog no. 827:08365, LI-COR)-labeled secondary 
antiserum in 0.1% Tween-5% nonfat dry milk blocking buffer for 1 h at room temperature. The 
membranes were imaged using a LI-COR Odyssey scanner. Detection and quantification were 
performed using Odyssey Image Studio software. 

In situ muscle stimulation. 
In situ tetanus force and low-frequency fatigue experiments were performed in mouse slow-twitch 
soleus and fast-twitch plantaris muscles. Before stimulation of the motor nerve, the animals were 
anesthetized by pentobarbital sodium (Nembutal) injection (100 mg/kg body wt ip). The muscles were 
isolated, with care taken to leave the blood and nerve supply intact, and stimulated as described 
previously (27) using the 1300A Whole Mouse Test System (Aurora Scientific, Aurora, ON, Canada). 
Core temperature was held at 37°C. The sciatic nerve was drawn into a suction electrode, and biphasic 
pulses were administered to elicit peak tetanic tension at 160 Hz for 200 ms (for plantaris) and 150 Hz 
for 300 ms (for soleus). Optimal muscle length was established, and peak tetanic force and half 
relaxation time were measured. Muscle fatigue testing was carried out for 20 min at 150 Hz with 200-
ms trains (for soleus) and at 160 Hz with 100-ms trains (for plantaris) produced every second. After a 3-
min rest period, a postfatigue tetanus was recorded; then the fatigued muscles were surgically 
removed and weighed. 

Statistical analyses. 
Data were analyzed by Student’s t-test (2-tailed). Values are means ± SE. Statistical significance was 
defined as P < 0.05. 

RESULTS 
Validation of an endurance-detraining protocol for mice. 
We first sought to develop and validate an endurance-detraining protocol for mice. Eight-week-old 
male wild-type FVB/N mice were trained for 8 wk on a voluntary running wheel. Mice that averaged <5 
km/night were removed from the study. The remaining (Runner) mice ran, on average, 13–14 
km/night. After this training regimen, a battery of endurance-training end points were used to 
compare the trained group with age- and strain-matched sedentary control mice. The Runner mice 
demonstrated a modest, but significant, reduction in body weight after the training period that was 
largely accounted for by a reduction in percent body fat (Fig. 2). Runner mice performed better on 
both low- and high-intensity run-to-exhaustion treadmill protocols (Fig. 3A). Mean ΔV�o2max was 
significantly higher in the Runner mice posttraining (Fig. 3B). Notably, mean ΔV�o2max dropped 
significantly in the Sedentary control mice at the second time point. This is likely due to an aging effect, 
a phenomenon noted across all experiments in this study. Consistent with this conclusion, age-related 
reductions in V�o2max have been described in rodents, albeit at older ages (47). As expected, RER at 50% 
V�o2max was decreased in the Runner mice posttraining, consistent with training-induced increased 
utilization of fatty acid as fuel (Fig. 3C). In addition, mean state 3 mitochondrial respiration rate, 
determined from muscle fibers as a general measure of mitochondrial capacity, was significantly 
increased in Runner mice compared with Sedentary control mice (Fig. 3D). Lastly, a significant increase 
in expression of the gene encoding the oxidative MHC 2a isoform (Myh2) was observed in the muscle 
of Runner mice, consistent with an exercise-induced fiber type shift (Fig. 3E). 
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Fig. 2. Voluntary wheel running for 8 wk leads to a lean phenotype. Body weight and percent lean and fat mass were 
determined for mice at 8 wk (Pre) and 16 wk of age after running-wheel training (Trained). Values are means ± SE (n ≥ 6 
mice in each group). *P < 0.05 vs. Sedentary control (by Student’s t-test). 
 

 
Fig. 3.Voluntary wheel running for 8 wk leads to a trained muscle phenotype. A: Runner mice at 8 wk (Pre) and 16 wk of age 
after running-wheel training (Trained) were subjected to a treadmill run-to-exhaustion protocol (a high- and low-intensity 
regimen). Age-matched Sedentary mice served as controls. Total running distance to exhaustion was measured as an end 
point. B and C: peak V�o2 (ΔV�o2max) and respiratory exchange ratio (RER) were measured using the high-intensity protocol 
described in A. D: succinate-driven mitochondrial respiratory rates in saponin-permeabilized muscle strips prepared from 
the soleus of Sedentary and Runner mice. Rates were measured under the following conditions: basal (state 2), ADP-
stimulated (state 3), and oligomycin (Oligo)-treated (state 4). Respiratory coefficient (RC) is also shown. E: quantitative RT-
PCR assessment of expression of myosin heavy chain (MHC) genes, namely, MHC1 (Myh7), MHC2a (Myh2), MHC2x (Myh1), 
and MHC2b (Myh4), in gastrocnemius from Sedentary and Runner mice after 8 wk of training. Values are means ± SE (n ≥ 6 
mice in each group). Sedentary group was normalized to 1.0. Normalized arbitrary units (AU) are shown. *P < 0.05 vs. 
Sedentary control (by Student’s t-test). 
 



To further assess the training response and to establish muscle autonomous end points in the 
detraining experiments, an in situ muscle stimulation protocol was employed (27). End points were 
collected for soleus and plantaris muscles, with the expectation of a greater degree of training effects 
in the former, given that a wheel-running protocol was employed (16). After the 8-wk training regimen, 
generation of force was not different between Sedentary and Runner mice in either muscle (Fig. 
4, A and B). In contrast, half relaxation time in the soleus, reflective of the rate of Ca2+ reuptake into 
the sarcoplasmic reticulum, was significantly less in the Runner mice, although no change was seen in 
the plantaris after training (Fig. 4C). Together, the in vivo and ex vivo measurements denote a 
significant endurance-training effect in the Runner mice. 

 
Fig. 4. Endurance training affects half relaxation time, but not peak force, in soleus muscle in an in situ preparation. A: 
representative force traces from soleus and plantaris after in situ muscle stimulation. B: peak force in soleus and plantaris 
after muscle stimulation measured using the Aurora 1300A whole mouse test system after 8 wk of training (Trained) for 
Runner and Sedentary (no wheel in cage) mice. C: half relaxation time in soleus and plantaris of mice used for traces in A. 
Values are means ± SE (n ≥ 6 mice in each group). *P < 0.05 vs. Sedentary control (by Student’s t-test). 
 

Next, we assessed the effects of detraining over a period of 6 wk following the 8-wk training period. 
Detraining effects can be partial or complete. A complete loss of training was defined by loss of a 
significant difference in an end point compared with the Sedentary control mice at the same time point 
(* in Fig. 5). Partial detraining effects were defined as a significant difference between the value for the 
fully trained Runner mice and the value after cessation of training, yet with a training effect maintained 
compared with the paired Sedentary control mice (#, in absence of *, in Fig. 5). This latter comparison 
was possible, given that the values for the Sedentary mice across the time points were not significantly 
different. The increase in ΔV�o2max, a robust measurement of endurance training, was completely lost at 
4 wk posttraining (Fig. 5A). Treadmill exercise performance was significantly decreased at 6 wk of 
detraining compared with fully trained Runner mice but was still higher than that of Sedentary control 
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mice at the same time point, suggesting a partial detraining response (Fig. 5B). Similarly, the training 
effect on RER was partially lost (Fig. 5C). Lastly, the training effect on the in situ measure of half 
relaxation time was completely lost by 6 wk posttraining (Fig. 5D). 

 
Fig. 5. Exercise fitness measurements reflect detraining effects 6 wk after cessation of endurance training. A: Runner mice 
were trained for 8 wk on a voluntary running wheel. End points were collected from age-matched Sedentary and Runner 
mice at 0 (Trained), 2, 4, and 6 wk following removal of the wheel. A–C: ΔV�o2max, distance to exhaustion on a treadmill, and 
RER in mice subjected to a high-intensity run-to-exhaustion protocol. D: half relaxation time in soleus. Values are means ± 
SE. *P < 0.05 vs. Sedentary control at the same time point; #P < 0.05 vs. Runner at Trained time point (by Student’s t-test). 
 

Muscle-specific PGC-1β overexpression confers an “endurance fitness” phenotype in 
adult mice. 
The transcriptional coactivators PGC-1α and -1β have been shown to mediate many of the skeletal 
muscle responses to exercise (3, 4, 18, 36). Therefore, we sought to determine if activation of PGC-1 
signaling would have an impact on the training-detraining response. A skeletal muscle-specific, 
inducible, “tet-off” mouse model (51) was used to assess the effects of PGC-1-β overexpression at 
baseline in Sedentary mice and during the detraining period. As an initial step, we verified the 
induction of PGC-1β in Sedentary adult mice. PGC-1β mRNA and protein levels were induced in a 
skeletal muscle-specific pattern beginning 3 days after removal of doxycycline (Fig. 6, A and B). Protein 
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levels remained at the induced steady-state level for ≥56 days after removal of doxycycline (Fig. 6B). 
The induction of PGC-1β was specific to expression of the transgene (Fig. 6C). Notably, with induction 
of PGC-1β transgenic expression, levels of endogenous PGC-1α and -1β transcripts were significantly 
decreased (Fig. 6C), as previously shown (4). Importantly, we did not observe histological evidence of 
cellular or myofibrillar derangements in skeletal muscle (Fig. 6D). As expected, PGC-1β overexpression 
[TRE-PGC-1β(+)] induced known PGC-1 target genes involved in mitochondrial energy metabolism (30), 
including those involved in the tricarboxylic acid cycle, oxidative phosphorylation, and fatty acid β-
oxidation (Fig. 7A). In addition, mtDNA and Tfam levels were increased, suggesting an increase in 
mitochondrial biogenesis (Fig. 7B). Consistent with previous studies showing that PGC-1β stimulates 
angiogenesis (2, 10, 44), CD31 staining was increased 4 and 8 wk after PGC-1β induction (Fig. 7C). 
Lastly, as predicted by the work of others (4), the MHC2x (Myh1 isoform) fiber gene was selectively 
induced (Fig. 7D). MHC immunofluorescence of the glycolytic and oxidative regions of the 
gastrocnemius also demonstrated an increase in type IIx fibers with PGC-1β overexpression (Fig. 7E). 

 
Fig. 6. PGC-1β is significantly expressed 3 days after doxycycline removal, and long-term induction of PGC-1β expression is 
not detrimental to the myofibrillar structure. A: relative PGC-1β mRNA levels (70 days after doxycycline removal) in 
gastrocnemius (GC), white vastus (VAS), soleus (SOL), and plantaris (Plant) of Sedentary mice. Heart (HRT) and liver (LIV) are 
shown as negative controls. Values are means ± SE (n = 4–6/group; quantitative RT-PCR was performed in triplicate). *P < 
0.05 vs. TRE-PGC-1β(−) control. B: Western blot of PGC-1β protein levels in gastrocnemius at 3, 7, 14, and 56 days after 
removal of doxycycline. NS, nonspecific band to show control for loading. C: levels of the PGC-1β transgene transcript (flag-
specific primer set, left), endogenous PGC-1β transcript (middle), and PGC-1α transcript (right) 8 wk after doxycycline 
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removal (all groups) and 6 wk after removal of the running wheels (Runner mice). Values are means ± SE (n = 6–7/group). 
*P < 0.05 vs. TRE-PGC-1β(−) Sedentary; #P < 0.05, TRE-PGC-1β(+) Runner vs. TRE-PGC-1β(−) Runner. D: electron micrographs 
of the soleus in mice 6 wk after doxycycline removal indicate no ultrastructural derangements with PGC-1β overexpression. 
 

 

 
Fig. 7. Muscle-specific PGC-1β overexpression in Sedentary mice activates known training-induced gene expression markers 
and induces angiogenesis. A: mRNA levels of the mitochondrial genes citrate synthase (Cs), cytochrome c (Cycs), ATP 
synthase-β (Atp5b), lactate dehydrogenase A and B (Ldha and Ldhb), and long-chain acyl-CoA dehydrogenase (Acadl) in 
gastrocnemius 8 wk after doxycycline removal. Values are means ± SE (n = 5–8/group). B: mitochondrial DNA (mtDNA) 
levels, determined as ratio of mitochondrial- to nuclear-encoded DNA, and mitochondrial transcription factor A (Tfam) gene 
expression levels (quantitative RT-PCR) in the samples described in A. Values are means ± SE (n = 6–8/group). TRE-PGC-
1β(−) was normalized to 1.0. C: representative images of CD31 staining of gastrocnemius muscle 4 and 8 wk postinduction 
(after doxycycline removal) of PGC-1β expression. Positive staining is denoted by brown color. D: mRNA levels encoding 
MHC gene isoforms MHC1 (Myh7), MHC2a (Myh2), MHC2x (Myh1), and MHC2b (Myh4) in gastrocnemius 8 wk after 
doxycycline removal. Values are means ± SE (n = 8/group). *P < 0.05 vs. TRE-PGC-1β(−) (by Student’s t-test). E: 
representative sections of oxidative and glycolytic regions of gastrocnemius from Sedentary TRE-PGC-1β(−) and TRE-PGC-
1β(+) mice 8 wk after doxycycline removal were stained for MHC1 (yellow), MHC2a (red), and MHC2b (green). Unstained 
(black) fibers are MHC2x. Scale bars = 200 μm. Note increase in black (unstained) fibers in TRE-PGC-1β(+) muscle, consistent 
with increased proportion of MHC2x fibers. 
 



The functional impact of PGC-1β overexpression on the trained phenotype was assessed independent 
of the training regimen by comparison of TRE-PGC-1β(−) Sedentary and TRE-PGC-1β(+) Sedentary mice. 
Induction of PGC-1β significantly increased ΔV�o2max (Fig. 8A) and decreased RER (Fig. 8B) by 6 wk after 
doxycyline removal. In addition, performance on the run-to-exhaustion test was increased by 2 wk (Fig. 
8C) and 4 wk (data not shown) after doxycycline removal, but this effect was no longer present at 6 wk 
(Fig. 8C). The reason for this latter observation is not clear but could relate to adaptation to the 
treadmill-running protocol after serial testing due to learned behavior related to tolerating the shock 
stimulus that results in cessation of the protocol. Together, these results confirmed that the inducible 
transgenic system was operational and that overexpression of PGC-1β was sufficient to induce a robust 
endurance muscle phenotype, independent of exercise. 

 
Fig. 8. PGC-1β overexpression in muscle mimics effects of training in Sedentary mice. A–C: ΔV�o2max, RER, and distance to 
exhaustion on a treadmill during a high-intensity run-to-exhaustion protocol for TRE-PGC-1β(−) and TRE-PGC-1β(+) mice. 
End points were collected 2 and 6 wk following doxycycline removal. Values are means ± SE. *P < 0.05 vs. TRE-PGC-1β(−) 
controls at the same time point (by Student’s t-test). 
 

Effects of muscle PGC-1β on detraining. 
To assess the effects of induction of PGC-1β on the detraining response, TRE-PGC-1β(−) Runner and 
TRE-PGC-1β(+) Runner mice were compared 6 wk after removal of the running wheels (8 wk after 
doxycycline removal and induction of PGC-1β transgene expression; Fig. 1). ΔV�o2max was significantly 
higher in the TRE-PGC-1β(+) Runner than the TRE-PGC-1β(−) Runner mice following 6 wk of detraining 
but was significantly lower than in the fully trained mice, indicative of partial prevention of this 
detraining response (Fig. 9A). In addition, RER was lower (P = 0.06) in the TRE-PGC-1β(+) Runner than 
TRE-PGC-1β(−) Runner mice at the end of the detraining period (Fig. 9B). However, there was no 
difference in running performance based on the treadmill “distance-to-exhaustion” parameter at any 
time between the two groups (Fig. 9C). Similarly, PGC-1β overexpression did not impact the training 
effect on in situ muscle stimulation studies and, generally, did not demonstrate an effect of PGC-1β on 
detraining (Fig. 9C). 
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Fig. 9. Muscle-specific PGC-1β overexpression reduces detraining effect on V�o2max. Mice were run on a treadmill according 
to a run-to-exhaustion protocol (a high-intensity regimen) 6 wk after cessation of training on a voluntary running wheel 
(Runner mice) and 8 wk after removal of doxycycline to induce PGC-1β expression in TRE-PGC-1β(+) mice compared with 
TRE-PGC-1β(−) mice. A–C: ΔV�o2max, RER, and total distance to exhaustion. Values are means ± SE. D: peak force, percent 
reduction in force after 20 min of electrical stimulation (measure of fatigue), and half relaxation time in soleus and plantaris 
in a separate cohort of mice at 6 wk posttraining after muscle stimulation using the Aurora 1300A Whole Mouse Test 
System. Values are means ± SE (n = 5–8/group). *P < 0.05 vs. TRE-PGC-1β(−) controls at the same time point; #P < 0.05 vs. 
Trained time point of the same group (by Student’s t-test). 
 

The results of the detraining studies indicated that only a subset of end points was impacted by 
induction of PGC-1β expression in muscle. Specifically, training-induced changes in V�o2max and RER end 
points were observed at 6 wk posttraining (Fig. 9, A and B), whereas running performance and in situ 
muscle fatigability were unaffected (Fig. 9, C and D). These results suggest that the PGC-1β-induced 
endurance phenotype is unable to fully defend against detraining. We assessed other components of 
the training response to confirm that known PGC-1β target responses were being activated in mouse 
muscle following cessation of training. First, we found an increase in the expression of downstream 
PGC-1 effectors, including Esrra and Esrrb (Fig. 10A), along with an induction of corresponding 
downstream targets, including Ldhb, a known marker of exercise training, mtDNA, and Tfam expression 
levels (Fig. 10B). In addition, levels of CD31/Pecam-1 and MHC2x transcripts were induced (Figs. 
10, C and D) in muscle of TRE-PGC-1β(+) compared with TRE-PGC-1β(−) Runner mice. These results 
indicate that the known target actions of PGC-1 in muscle were also observed during the detraining 
period but that this is insufficient to prevent all functional changes during detraining. 
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Fig. 10. Overexpression of PGC-1β activates known downstream targets in muscle during the detraining period. A–C: 
relative transcript expression levels for nuclear transcription factors/genes [peroxisome proliferator-activated receptor-δ 
(Ppard), estrogen-related receptor (EsRR)-α, -β, and -γ (Esrra, Esrrb, and Esrrg), lactate dehydrogenase A (Ldha), 
mitochondrial transcription factor A (Tfam), platelet and endothelial cell adhesion molecule 1 (Pecam-1), and MHC2x 
(Myh1)] 8 wk after removal of doxycycline (6 wk of detraining). mtDNA is a measure of mitochondrial/genomic DNA. Values 
are means ± SE (n ≥ 6 mice in each group). *P < 0.05 vs. TRE-PGC-1β(−) Sedentary controls; #P < 0.05 vs. TRE-PGC-1β(−) 
Runner mice (by Student’s t-test). D: representative images of CD31 staining of gastrocnemius muscle from TRE-PGC-1β(−) 
Runner and TRE-PGC-1β(+) Runner mice 6 wk posttraining. 
 

DISCUSSION 
The muscle endurance-detraining response is well recognized but poorly understood. Delineation of 
the mechanisms involved in muscle detraining could lead to the discovery of new therapeutic 
strategies to reverse this process in a variety of injury and disease states. The wheel-running-based 
protocol described here allowed us to assess training and detraining responses in mice. Our collective 
results led to the following conclusions. 1) Muscle-specific induction of PGC-1β expression, using a 
conditional transgenic system, is sufficient to phenocopy the effects of endurance exercise training in 
Sedentary (nontrained) mice. 2) Induction of PGC-1β in combination with exercise training does not 
enhance the endurance phenotype beyond exercise alone. 3) Muscle-specific induction of PGC-1β 
prevents some, but not all, components of the detraining response, suggesting that mechanisms 
independent of the exercised-induced muscle endurance fitness circuitry, as mimicked by activation of 



PGC-1β signaling, contribute to detraining. Accordingly, the physiological reprogramming that 
contributes to the detraining response likely involves muscle autonomous and nonautonomous inputs. 

We found that muscle-specific overexpression of the transcriptional coregulator PGC-1β resulted in an 
endurance-trained phenotype in sedentary mice. This observation is consistent with the results of 
previous studies demonstrating that muscle-specific PGC-1β transgenes are capable of enhanced 
performance on low-intensity treadmill regimens (4) and exhibit increased muscle capillary density 
(44). Our results demonstrate that forced expression of PGC-1β results in a significant endurance-
training effect within 2 wk (Fig. 8). An array of end points, including treadmill performance, V�o2max and 
RER, gene markers of mitochondrial function and fiber type, and vascular density, support this 
conclusion. The majority of the endurance end points identified in wild-type mice trained on running 
wheels, including gene markers of mitochondrial biogenesis, enhanced treadmill running time, 
increased V�o2max, reduced RER, and angiogenesis, were also triggered by PGC-1β overexpression in 
sedentary mice. 

A key difference in the endurance phenotype in wheel-running vs. TRE-PGC-1β(+) Sedentary mice was 
the effect on fiber type proportion, as determined by gene markers. As described by others, we 
observed an increase in Myh2 (MHC2a gene) expression in TRE-PGC-1β(−) Runner gastrocnemius 
muscle. In contrast, TRE-PGC-1β(+) Sedentary mice exhibited a selective increase in Myh1 (MHC2x 
gene) expression and immunostaining without a change in Myh2 expression. Selective induction 
of Myh1 expression has been described in muscle of PGC-1β transgenes (4). The functional relevance 
of type IIx fibers in mice, including contribution to the endurance phenotype in TRE-PGC-1β(+) mice, is 
unknown. Previous studies have shown that the related transcriptional coactivator PGC-1α is also 
capable of inducing an endurance-training phenotype in muscle-specific transgenic mice (35, 49). 
However, PGC-1α overexpression in muscle induces a classic oxidative fiber type switch (35), in 
contrast to the Myh1 selectivity described here with PGC-1β. Together, these observations suggest 
that PGC-1α and -1β regulate both overlapping and distinct target genes in muscle. 

Given that muscle PGC-1β overexpression was sufficient to drive an endurance phenotype, we 
assessed the impact of this intervention during detraining. It is interesting that only a subset of 
detraining responses was prevented by PGC-1β overexpression [TRE-PGC-1β(+) Runner vs. TRE-PGC-
1β(−) Runner mice]. Importantly, the loss of the training-induced increase in V�o2max in the TRE-PGC-
1β(−) Runner mice during detraining was significantly less in the TRE-PGC-1β(+) Runner mice. The main 
factors that influence V�o2max, a key determinant of endurance fitness, include O2 supply (O2 transport 
to the muscle) and demand (including capacity for mitochondrial oxidative phosphorylation). 
Consistent with the effects on V�o2max, we found that vascular density and markers of mitochondrial 
biogenesis were maintained during the detraining period in the TRE-PGC-1β(+) Runner mice. In 
contrast to the V�o2max results, functional detraining responses, including running time and contractile 
function (in situ muscle stimulation), were not different between the detrained TRE-PGC-1β(+) and 
TRE-PGC-1β(−) Runner mice. These results, together with the endurance phenotype of PGC-1β 
overexpression in the Sedentary mice, suggest that the detraining response involves more than simply 
deactivation of the muscle training response. 

The interesting discrepancy between the PGC-1β-driven endurance phenotype in the Sedentary 
transgenic animals and the mixed results during the detraining period could theoretically reflect a 
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time-related diminution of the impact of PGC-1β. However, this seems highly unlikely, given that 
several fitness parameters noted to be maintained during the detraining period in the exercised 
animals were also maintained in the Sedentary TRE-PGC-1β(+) mice at the same time points. 
Specifically, ΔV�o2max and RER remained significantly different in Sedentary PGC-1β-overexpressing 
animals vs. nontransgenic mice at late time points during the detraining period. In contrast, other 
parameters, such as run-to-exhaustion and contractility measurements, were not maintained during 
the late time periods in the exercised-detrained transgenic group. In the case of the run-to-exhaustion 
parameter, it is possible that a learned behavior changed the accuracy of this end point and precludes 
its use over time. Together, however, we do not believe that time-related changes in the efficacy of the 
PGC-1β transgene explain the interesting observation that only a subset of end points was maintained 
during detraining. Rather, only a subset of endurance-training responses was maintained during 
detraining, despite PGC-1β overexpression. 

The interesting observation that PGC-1β overexpression cannot maintain all endurance parameters 
during detraining suggests that some detraining effects are external to muscle and, therefore, are not 
affected by our transgenic strategy. For example, reductions in blood volume, red blood cell mass, and 
cardiac output are muscle nonautonomous factors known to influence endurance performance (39). In 
addition, effects related to neural circuitry or hepatic glucose production converging on muscle could 
be at play. Alternatively, or in addition, the selective maintenance in Myh1-rich fibers, without 
corresponding induction of Myh2-rich fibers, as typically seen in an endurance response, may be 
insufficient to prevent the performance abnormalities that occur with detraining. Future studies, with 
interventions that are known to mimic the increase in oxidative fibers, along with the other responses, 
will be important in this regard. 

The protocol employed here results in a robust endurance-trained phenotype followed by detraining in 
FVB mice. We collected a panel of end points that measure molecular, cellular, and functional 
responses to endurance training and detraining. This protocol should prove useful for studies aimed at 
assessing the impact of genetic, pharmacological, physiological, or dietary interventions on the 
endurance-training and -detraining phenotypes. Importantly, the use of an extensive panel of end 
points allows identification of effects on individual components of the muscle-detraining responses, as 
observed in this study with the PGC-1β intervention. We propose that successful prevention of the 
detraining response may require a combination of therapeutic approaches to prevent or treat the 
pleiotropic responses of detraining. Protocols such as the approach described here are necessary to 
assess such combinatorial approaches. 

In summary, our results suggest that the process of endurance detraining involves mechanisms beyond 
the reversal of muscle autonomous mechanisms involved in endurance fitness. However, the 
observation that PGC-1β is capable of impacting a subset of the muscle-detraining responses suggests 
that therapeutic approaches, possibly in combination with targeting PGC-1β, could be effective in 
reducing or preventing the untoward effects of detraining. 

https://0-www-physiology-org.libus.csd.mu.edu/doi/full/10.1152/ajpendo.00380.2016#B39


GRANTS 
This work was supported by US Department of Defense Grant W81XWH-11-1-0764 (D. P. Kelly) and 
National Institute of Diabetes and Digestive and Kidney Diseases Grant R01 DK-045416 (D. P. Kelly). P. 
M. Coen is supported by National Institute on Aging Career Development Award K01 AG-044437. 

DISCLOSURES 
D. P. Kelly is a scientific consultant for Pfizer, Inc., and received research support from Takeda 
Pharmaceutical Co. R. B. Vega received research support from Pfizer, Inc. P. M. Coen is a scientific 
consultant for Mitobridge, Inc. 

AUTHOR CONTRIBUTIONS 
S.L., L.R., J.R., and J.A. performed the experiments; S.L., T.C.L., L.R., J.R., J.A., R.H.F., and R.B.V. analyzed 
the data; S.L., T.C.L., and L.R. prepared the figures; S.L., T.C.L., L.R., J.R., J.A., P.M.C., R.H.F., R.B.V., and 
D.P.K. edited and revised the manuscript; S.L., T.C.L., L.R., J.R., J.A., P.M.C., R.H.F., R.B.V., and D.P.K. 
approved the final version of the manuscript; T.C.L. and D.P.K. conceived and designed the research; 
T.C.L., J.A., P.M.C., R.H.F., R.B.V., and D.P.K. interpreted the results of the experiments; T.C.L. and 
D.P.K. drafted the manuscript. 

ACKNOWLEDGMENTS 
We thank Lorenzo Thomas for assistance with manuscript preparation; Jeanne Brooks and Ling Lai for 
excellent technical assistance; Orlando Rodriguez and Caron Stonebrook for assistance with the animal 
studies; the Sanford Burnham Prebys (SBP) Cardiometabolic Phenotyping Core for the ΔV�o2max and RER 
studies; and the SBP Histology Core for CD31 and MHC staining and electron microscopy. 

AUTHOR NOTES 
• *S. Lee and T. C. Leone contributed equally to this work. 

• Address for reprint requests and other correspondence: D. P. Kelly, Sanford Burnham Prebys 
Medical Discovery Institute, 6400 Sanger Rd., Orlando, FL 32827 (e-
mail: dkelly@sbpdiscovery.org). 

REFERENCES 
1. Andersen JL, Schjerling P, Andersen LL, Dela F. Resistance training and insulin action in humans: effects of de-

training. J Physiol 551:1049–1058, 2003. doi:10.1113/jphysiol.2003.043554. 
2. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, 

Baek KH, Rosenzweig A, Spiegelman BM. HIF-independent regulation of VEGF and angiogenesis by the 
transcriptional coactivator PGC-1α. Nature 451: 1008–1012, 2008. doi:10.1038/nature06613. 

3. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, 
Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional 
coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab 1: 
259–271, 2005. doi:10.1016/j.cmet.2005.03.002. 

4. Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y, Chin S, Spiegelman BM. The transcriptional 
coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 5: 35–
46, 2007. doi:10.1016/j.cmet.2006.12.003. 

mailto:dkelly@sbpdiscovery.org


5. Arciero PJ, Smith DL, Calles-Escandon J. Effects of short-term inactivity on glucose tolerance, energy 
expenditure, and blood flow in trained subjects. J Appl Physiol (1985) 84: 1365–1373, 1998. 

6. Ayala JE, Bracy DP, James FD, Julien BM, Wasserman DH, Drucker DJ. The glucagon-like peptide-1 receptor 
regulates endogenous glucose production and muscle glucose uptake independent of its incretin action. 
Endocrinology 150: 1155–1164, 2009. doi:10.1210/en.2008-0945. 

7. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal 
muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16: 1879– 1886, 
2002. doi:10.1096/fj.02-0367com. 

8. Bell KE, von Allmen MT, Devries MC, Phillips SM. Muscle disuse as a pivotal problem in sarcopenia-related 
muscle loss and dysfunction. J Frailty Aging 5: 33–41, 2016. 

9. Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman BM, Stevenson SC, Rangwala SM. Muscle-specific 
expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. J 
Appl Physiol (1985) 104: 1304–1312, 2008. doi:10.1152/japplphysiol.01231.2007. 

10. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z. The 
transcriptional coactivator PGC-1α mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl 
Acad Sci USA 106: 21401–21406, 2009. doi:10.1073/pnas.0909131106. 

11. Coyle EF, Martin WH 3rd, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JO. Time course of loss of 
adaptations after stopping prolonged intense endurance training. J Appl Physiol Respir Environ Exerc 
Physiol 57: 1857–1864, 1984. 

12. Dai B, Sorensen CJ, Derrick TR, Gillette JC. The effects of postseason break on knee biomechanics and lower 
extremity EMG in a stop-jump task: implications for ACL injury. J Appl Biomech 28: 708–717, 2012. 
doi:10.1123/jab.28.6.708. 

13. Daugaard JR, Nielsen JN, Kristiansen S, Andersen JL, Hargreaves M, Richter EA. Fiber type-specific expression 
of GLUT4 in human skeletal muscle: influence of exercise training. Diabetes 49: 1092–1095, 2000. 
doi:10.2337/diabetes.49.7.1092. 

14. Eisele PS, Furrer R, Beer M, Handschin C. The PGC-1 coactivators promote an anti-inflammatory environment 
in skeletal muscle in vivo. Biochem Biophys Res Commun 464: 692–697, 2015. 
doi:10.1016/j.bbrc.2015.06.166. 

15. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J 
Clin Invest 116: 615–622, 2006. doi:10.1172/JCI27794. 

16. Fitts RH, Holloszy JO. Contractile properties of rat soleus muscle: effects of training and fatigue. Am J Physiol 
Cell Physiol 233: C86–C91, 1977. 17. Gali Ramamoorthy T, Laverny G, Schlagowski AI, Zoll J, Messaddeq 
N, Bornert JM, Panza S, Ferry A, Geny B, Metzger D. The transcriptional coregulator PGC-1β controls 
mitochondrial function and antioxidant defence in skeletal muscles. Nat Commun 6: 10210, 2015. doi: 
10.1038/ncomms10210. 

18. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z. PGC-1α plays a functional role in exercise-induced 
mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. 
Am J Physiol Cell Physiol 298: C572–C579, 2010. doi:10.1152/ajpcell.00481.2009. 

19. Ghersa P, Gobert RP, Sattonnet-Roche P, Richards CA, Merlo Pich E, Hooft van Huijsduijnen R. Highly 
controlled gene expression using combinations of a tissue-specific promoter, recombinant adenovirus 
and a tetracycline-regulatable transcription factor. Gene Ther 5: 1213–1220, 1998. 
doi:10.1038/sj.gt.3300713. 

20. Goss DL, Christopher GE, Faulk RT, Moore J. Functional training program bridges rehabilitation and return to 
duty. J Spec Oper Med 9: 29–48, 2009. 

21. Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T. cDNA Cloning and mRNA analysis of 
PGC-1 in epitrochlearis muscle in swimming-exercised rats. Biochem Biophys Res Commun 274: 350–
354, 2000. doi:10.1006/bbrc.2000.3134. 

22. Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM. Skeletal muscle fiber-
type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J Biol 
Chem 282: 30014–30021, 2007. doi:10.1074/jbc.M704817200. 



23. Hawley JA, Holloszy JO. Exercise: it’s the real thing! Nutr Rev 67: 172–178, 2009. doi:10.1111/j.1753-
4887.2009.00185.x. 

24. Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA, Holloszy JO. Glucose transporter protein 
content and glucose transport capacity in rat skeletal muscles. Am J Physiol Endocrinol Metab 259: 
E593–E598, 1990. 

25. Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J Physiol 
Pharmacol 59, Suppl 7: 5–18, 2008. 

26. Houston ME, Bentzen H, Larsen H. Interrelationships between skeletal muscle adaptations and performance 
as studied by detraining and retraining. Acta Physiol Scand 105: 163–170, 1979. doi:10.1111/j.1748-
1716.1979.tb06328.x. 

27. Hurst JE, Fitts RH. Hindlimb unloading-induced muscle atrophy and loss of function: protective effect of 
isometric exercise. J Appl Physiol (1985) 95: 1405–1417, 2003. doi:10.1152/japplphysiol.00516.2002. 

28. Kaufman KR, Brodine S, Shaffer R. Military training-related injuries: surveillance, research, and prevention. 
Am J Prev Med 18, Suppl: 54–63, 2000. doi:10.1016/S0749-3797(00)00114-8. 

29. Klausen K, Andersen LB, Pelle I. Adaptive changes in work capacity, skeletal muscle capillarization and 
enzyme levels during training and detraining. Acta Physiol Scand 113: 9–16, 1981. doi:10.1111/j.1748-
1716.1981.tb06854.x. 

30. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. 
Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal 
maturation of the heart. Genes Dev 22: 1948–1961, 2008. doi:10.1101/gad.1661708. 

31. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated 
receptor-γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106: 847–856, 2000. 
doi:10.1172/JCI10268. 

32. Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu 
P, Zhang D, Litwin SE, Zaha VG, Fountain KT, Boudina S, Jimenez-Linan M, Blount M, Lopez M, 
Meirhaeghe A, Bohlooly-Y M, Storlien L, Strömstedt M, Snaith M, Oresic M, Abel ED, Cannon B, Vidal-
Puig A. Ablation of PGC-1β results in defective mitochondrial activity, thermogenesis, hepatic function, 
and cardiac performance. PLoS Biol 4: e369, 2006. doi:10.1371/journal.pbio.0040369. 

33. Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, 
Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, 
Kelly DP. PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, 
abnormal weight control and hepatic steatosis. PLoS Biol 3: e101, 2005. 
doi:10.1371/journal.pbio.0030101. 

34. Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, Yki-Järvinen H, Christin L, Secomb TW, 
Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin 
resistance in man. J Clin Invest 80: 415–424, 1987. doi:10.1172/JCI113088. 

35. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-
Duby R, Spiegelman BM. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle 
fibres. Nature 418: 797–801, 2002. doi:10.1038/nature00904. 

36. Lira VA, Benton CR, Yan Z, Bonen A. PGC-1α regulation by exercise training and its influences on muscle 
function and insulin sensitivity. Am J Physiol Endocrinol Metab 299: E145–E161, 2010. 
doi:10.1152/ajpendo.00755.2009. 

37. Malek MH, Olfert IM, Esposito F. Detraining losses of skeletal muscle capillarization are associated with 
vascular endothelial growth factor protein expression in rats. Exp Physiol 95: 359–368, 2010. 
doi:10.1113/expphysiol.2009.050369. 

38. Martin OJ, Lai L, Soundarapandian MM, Leone TC, Zorzano A, Keller MP, Attie AD, Muoio DM, Kelly DP. A role 
for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics 
during postnatal cardiac growth. Circ Res 114: 626–636, 2014. doi:10.1161/CIRCRESAHA.114.302562. 



39. Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations. II. Long 
term insufficient training stimulus. Sports Med 30: 145–154, 2000. doi:10.2165/00007256-200030030-
00001. 

40. Mujika I, Padilla S. Muscular characteristics of detraining in humans. Med Sci Sports Exerc 33: 1297–1303, 
2001. doi:10.1097/00005768-200108000-00009. 

41. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, 
Kang H, Shaw RJ, Evans RM. AMPK and PPARδ agonists are exercise mimetics. Cell 134: 405–415, 2008. 
doi:10.1016/j.cell.2008.06.051. 

42. Neufer PD. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise 
training. Sports Med 8: 302–320, 1989. doi:10.2165/00007256-198908050-00004. 

43. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC-1α gene in 
human skeletal muscle. J Physiol 546: 851–858, 2003. doi:10.1113/jphysiol.2002.034850. 

44. Rowe GC, Jang C, Patten IS, Arany Z. PGC-1β regulates angiogenesis in skeletal muscle. Am J Physiol 
Endocrinol Metab 301: E155–E163, 2011. doi:10.1152/ajpendo.00681.2010. 

45. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz 
WS. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell 
Biochem 184: 81–100, 1998. doi:10.1023/A:1006834912257. 

46. Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E. Fiber types and metabolic potentials of skeletal 
muscles in sedentary man and endurance runners. Ann NY Acad Sci 301: 3–29, 1977. 
doi:10.1111/j.1749-6632.1977.tb38182.x. 

47. Schefer V, Talan MI. Oxygen consumption in adult and AGED C57BL/6J mice during acute treadmill exercise 
of different intensity. Exp Gerontol 31: 387–392, 1996. doi:10.1016/0531-5565(95)02032-2. 

48. Song XM, Ryder JW, Kawano Y, Chibalin AV, Krook A, Zierath JR. Muscle fiber type specificity in insulin signal 
transduction. Am J Physiol Regul Integr Comp Physiol 277: R1690–R1696, 1999. 

49. Tadaishi M, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O. Skeletal muscle-specific expression of PGC-1α-b, an 
exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One 6: e28290, 
2011. doi:10.1371/journal.pone.0028290. 

50. Waters RE, Rotevatn S, Li P, Annex BH, Yan Z. Voluntary running induces fiber type-specific angiogenesis in 
mouse skeletal muscle. Am J Physiol Cell Physiol 287: C1342–C1348, 2004. 
doi:10.1152/ajpcell.00247.2004. 

51. Wende AR, Schaeffer PJ, Parker GJ, Zechner C, Han DH, Chen MM, Hancock CR, Lehman JJ, Huss JM, McClain 
DA, Holloszy JO, Kelly DP. A role for the transcriptional coactivator PGC-1α in muscle refueling. J Biol 
Chem 282: 36642–36651, 2007. doi:10.1074/jbc.M707006200. 

52. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, 
Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the 
thermogenic coactivator PGC-1. Cell 98: 115–124, 1999. doi:10.1016/S0092-8674(00)80611-X. 

53. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, Collia D, Chen Z, Wozniak DF, Leone TC, Kelly DP. 
Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type 
determination and insulin sensitivity. Cell Metab 12: 633–642, 2010. doi:10.1016/j.cmet.2010.11.008. 

54. Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 
2: e348, 2004. doi:10.1371/journal.pbio.0020348. 

 

 

 


	Marquette University
	e-Publications@Marquette
	5-1-2017

	Skeletal Muscle PGC-1β Signaling is Sufficient to Drive an Endurance Exercise Phenotype and to Counteract Components of Detraining in Mice
	Samuel Lee
	Teresa C. Leone
	Lisa Rogosa
	John Rumsey
	Julio Ayala
	See next page for additional authors
	Authors


	Abstract
	METHODS
	Transgenic mice.
	Experimental design.
	Mitochondrial respiration studies.
	Exercise studies and V̇o2max testing.
	Histological analyses and electron microscopy.
	RNA and genomic DNA analyses.
	Antibodies and Western immunoblot studies.
	In situ muscle stimulation.
	Statistical analyses.

	RESULTS
	Validation of an endurance-detraining protocol for mice.
	Muscle-specific PGC-1β overexpression confers an “endurance fitness” phenotype in adult mice.
	Effects of muscle PGC-1β on detraining.

	DISCUSSION
	GRANTS
	DISCLOSURES
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	AUTHOR NOTES
	REFERENCES

