276 research outputs found

    Magnetic spin excitations in Mn doped GaAs : A model study

    Full text link
    We provide a quantitative theoretical model study of the dynamical magnetic properties of optimally annealed Ga1x_{1-x}Mnx_xAs. This model has already been shown to reproduce accurately the Curie temperatures for Ga1x_{1-x}Mnx_xAs. Here we show that the calculated spin stiffness are in excellent agreement with those which were obtained from ab-initio based studies. In addition, an overall good agreement is also found with available experimental data. We have also evaluated the magnon density of states and the typical density of states from which the "mobility edge", separating the extended from localized magnon states, was determined. The power of the model lies in its ability to be generalized for a broad class of diluted magnetic semiconductor materials, thus it bridges the gap between first principle calculations and model based studies.Comment: 5 pages, 5 figures, Text and some figures revised to match the accepted versio

    Solubility limit and precipitate formation in Al-doped 4H-SiC epitaxial material

    No full text
    Heavily Al-doped 4H–SiC structures have been prepared by vapor phase epitaxy. Subsequent anneals have been carried out in an Ar atmosphere in a rf-heated furnace between 1500 °C and 2000 °C for 0.5 to 3 h. Secondary ion mass spectrometry has been utilized to obtain Al concentration versus depth as well as lateral distributions (ion images). Transmission electron microscopy(TEM) has been employed to study the crystallinity and determine phase composition after heat treatment. A solubility limit of ∼2×10²⁰ Al/cm³ (1900 °C) is extracted. Three-dimensional ion images show that the Al distribution does not remain homogeneous in layers heat treated at 1700 °C or above when the Al concentration exceeds 2×10²⁰ cm⁻³. Al-containing precipitates are identified by energy-filtered TEM.Financial support was partly received from the Swedish Foundation for Strategic Research (SSF) SiCEP program

    The point of maximum curvature as a marker for physiological time series

    Full text link
    We present a geometric analysis of the model of Stirling. In particular we analyze the curvature of a heart rate time series in response to a step like increment in the exercise intensity. We present solutions for the point of maximum curvature which can be used as a marker of physiological interest. This marker defines the point after which the heart rate no longer continues to rapidly rise and instead follows either a steady state or slow rise. These methods are then applied to find analytic solutions for a mono exponential model which is commonly used in the literature to model the response to a moderate exercise intensity. Numerical solutions are then found for the full model and parameter values presented in Stirling

    First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As

    Full text link
    The properties of diluted Ga1x_{1-x}Mnx_xAs are calculated for a wide range of Mn concentrations within the local spin density approximation of density functional theory. M\"ulliken population analyses and orbital-resolved densities of states show that the configuration of Mn in GaAs is compatible with either 3d5^5 or 3d6^6, however the occupation is not integer due to the large pp-dd hybridization between the Mn dd states and the valence band of GaAs. The spin splitting of the conduction band of GaAs has a mean field-like linear variation with the Mn concentration and indicates ferromagnetic coupling with the Mn ions. In contrast the valence band is antiferromagnetically coupled with the Mn impurities and the spin splitting is not linearly dependent on the Mn concentration. This suggests that the mean field approximation breaks down in the case of Mn-doped GaAs and corrections due to multiple scattering must be considered. We calculate these corrections within a simple free electron model and find good agreement with our {\it ab initio} results if a large exchange constant (Nβ=4.5N\beta=-4.5eV) is assumed.Comment: 15 pages, 14 figure

    Ferromagnetism in semiconductors and oxides: prospects from a ten years' perspective

    Full text link
    Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperature functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.Comment: review, 13 pages, 8 figures, 109 reference

    Toxicity of lunar dust

    Full text link
    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust properties will be required to provide ground truth for ground-based studies quantifying the toxicity of dust exposure and the associated health risks during future manned lunar missions.Comment: 62 pages, 9 figures, 2 tables, accepted for publication in Planetary and Space Scienc

    Erg Channel Is Critical in Controlling Cell Volume during Cell Cycle in Embryonic Stem Cells

    Get PDF
    The cell cycle progression in mouse embryonic stem cells (mESCs) is controlled by ion fluxes that alter cell volume [1]. This suggests that ion fluxes might control dynamic changes in morphology over the cell cycle, such as rounding up of the cell at mitosis. However, specific channels regulating such dynamic changes and the possible interactions with actomyosin complex have not been clearly identified. Following RNAseq transcriptome analysis of cell cycle sorted mESCs, we found that expression of the K+ ion channel Erg1 peaked in G1 cell cycle phase, which was confirmed by immunostaining. Inhibition of Erg channel activity caused loss of G1 phase cells via non-apoptotic cell death. Cells first lost the ability of membrane blebbing, a typical feature of cultured embryonic stem cells. Continued Erg inhibition further increased cell volume and the cell eventually ruptured. In addition, atomic force measurements on live cells revealed a decreased cortical stiffness after treatment, suggesting alterations in actomyosin organization. When the intracellular osmotic pressure was experimentally decreased by hypertonic solution or block of K+ ion import via the Na, K-ATPase, cell viability was restored and cells acquired normal volume and blebbing activity. Our results suggest that Erg channels have a critical function in K+ ion homeostasis of mESCs over the cell cycle, and that cell death following Erg inhibition is a consequence of the inability to regulate cell volume

    Dietary nitrate reduces muscle metabolic perturbation and improves exercise tolerance in hypoxia

    Get PDF
    The definitive version is available at www3.interscience.wiley.comExercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover study, nine healthy subjects completed knee-extension exercise to the limit of tolerance (T(lim)), once in normoxia (20.9% O(2); CON) and twice in hypoxia (14.5% O(2)). During 24 h prior to the hypoxia trials, subjects consumed 0.75 L of nitrate-rich beetroot juice (9.3 mmol nitrate; H-BR) or 0.75 L of nitrate-depleted beetroot juice as a placebo (0.006 mmol nitrate; H-PL). Muscle metabolism was assessed using calibrated (31)P-MRS. Plasma [nitrite] was elevated (P < 0.01) following BR (194 ± 51 nm) compared to PL (129 ± 23 nm) and CON (142 ± 37 nM). T(lim) was reduced in H-PL compared to CON (393 ± 169 vs. 471 ± 200 s; P < 0.05) but was not different between CON and H-BR (477 ± 200 s). The muscle [PCr], [P(i)] and pH changed at a faster rate in H-PL compared to CON and H-BR. The [PCr] recovery time constant was greater (P < 0.01) in H-PL (29 ± 5 s) compared to CON (23 ± 5 s) and H-BR (24 ± 5 s). Nitrate supplementation reduced muscle metabolic perturbation during exercise in hypoxia and restored exercise tolerance and oxidative function to values observed in normoxia. The results suggest that augmenting the nitrate-nitrite-NO pathway may have important therapeutic applications for improving muscle energetics and functional capacity in hypoxia

    A roadmap for the Human Developmental Cell Atlas

    Get PDF
    The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development
    corecore