94 research outputs found
ISO far-infrared observations of rich galaxy clusters II. Sersic 159-03
The far-infrared emission from rich galaxy clusters is investigated. Maps
have been obtained by ISO at 60, 100, 135, and 200 microns using the PHT-C
camera. Ground based imaging and spectroscopy were also acquired. Here we
present the results for the cooling flow cluster Sersic 159-03. An infrared
source coincident with the dominant cD galaxy is found. Some off-center sources
are also present, but without any obvious counterparts.Comment: 6 pages, 4 postscript figures, accepted for publication in `Astronomy
and Astrophysics
Far Infrared Source Counts at 70 and 160 microns in Spitzer Deep Surveys
We derive galaxy source counts at 70 and 160 microns using the Multiband
Imaging Photometer for Spitzer (MIPS) to map the Chandra Deep Field South
(CDFS) and other fields. At 70 microns, our observations extend upwards about 2
orders of magnitude in flux density from a threshold of 15 mJy, and at 160
microns they extend about an order of magnitude upward from 50 mJy. The counts
are consistent with previous observations on the bright end. Significant
evolution is detected at the faint end of the counts in both bands, by factors
of 2-3 over no-evolution models. This evolution agrees well with models that
indicate most ofthe faint galaxies lie at redshifts between 0.7 and 0.9. The
new Spitzer data already resolve about 23% of the Cosmic Far Infrared
Background at 70 microns and about 7% at 160 microns.Comment: Small modifications to match printed version. Models in Differential
Counts plots were changed. MIPS Source Counts are available at:
http://lully.as.arizona.edu/GTODeep/Counts/ . Accepted for Publication in
ApJS Special Issue on Spitze
The European Large Area ISO Survey III: 90micron extragalactic source counts
We present results and source counts at 90micron extracted from the
Preliminary Analysis of the European Large Area ISO Survey (ELAIS). The survey
covered about 11.6 square degrees of the sky in four main areas and was carried
out with the PHOT instrument onboard the Infrared Space Observatory (ISO). The
survey is at least an order of magnitude deeper than the IRAS 100micron survey
and is expected to provide constraints on the formation and evolution of
galaxies. The majority of the detected sources are associated with galaxies on
optical images. In some cases the optical associations are interacting pairs or
small groups of galaxies suggesting the sample may include a significant
fraction of luminous infrared galaxies. The source counts extracted from a
reliable subset of the detected sources are in agreement with strongly evolving
models of the starburst galaxy population.Comment: 13 pages, accepted by MNRAS. For more details on the ELAIS project
see http://athena.ph.ic.ac.uk
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Planck intermediate results XIV : Dust emission at millimetre wavelengths in the Galactic plane
Peer reviewe
Planck intermediate results: XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck
The nearby Chamaeleon clouds have been observed in Îł rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the Hi and 12CO radio data to (i) map the hydrogen column densities, NH, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the Hi-bright and CO-bright media; (ii) constrain the CO-to-H2 conversion factor, XCO; and (iii) probe the dust properties per gas nucleon in each phase and map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in Hi and 12CO line emission to model in parallel the Îł-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, Ï353; the thermal radiance of the large grains; and an estimate of the dust extinction, AVQ, empirically corrected for the starlight intensity. The dust and Îł-ray models have been coupled to account for the DNM gas. The consistent Îł-ray emissivity spectra recorded in the different phases confirm that the GeV-TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the Hi-DNM-CO transitions for five separate clouds. CO-dark H2 dominates the molecular columns up to AV â 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected AVQ extinction largely provides the best fit to the total gas traced by the Îł rays. Nevertheless, we find evidence for a marked rise in AVQ/NH with increasing NH and molecular fraction, and with decreasing dust temperature. The rise in Ï353/NH is even steeper. We observe variations of lesser amplitude and orderliness for the specific power of the grains, except for a coherent decline by half in the CO cores. This combined information suggests grain evolution. We provide average values for the dust properties per gas nucleon in the different phases. The Îł rays and dust radiance yield consistent XCO estimates near 0.7 Ă 1020cm-2K-1km-1s. The AVQ and Ï353 tracers yield biased values because of the large rise in grain opacity in the CO clouds. These results clarify a recurrent disparity in the Îł-ray versus dust calibration of XCO, but they confirm the factor of 2 difference found between the XCO estimates in nearby clouds and in the neighbouring spiral arms
Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap
Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < â60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353âGHz, and particularly the statistical distribution of the polarization fraction (p) and angle (Ï), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l0,b0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of Ï has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and Ï to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and Ï distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves
Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm2. We measure the magnetic field orientation on the plane of the sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and o the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM
- âŠ