17 research outputs found

    Spatial and temporal variations in basal melting at Nivlisen ice shelf, East Antarctica, derived from phase-sensitive radars

    Get PDF
    Thinning rates of ice shelves vary widely around Antarctica, and basal melting is a major component of ice shelf mass loss. In this study, we present records of basal melting at a unique spatial and temporal resolution for East Antarctica, derived from autonomous phase-sensitive radars. These records show spatial and temporal variations of basal melting in 2017 and 2018 at Nivlisen, an ice shelf in central Dronning Maud Land. The annually averaged basal melt rates are in general moderate (∌0.8 m yr−1). Radar profiling of the ice shelf shows variable ice thickness from smooth beds to basal crevasses and channels. The highest basal melt rates (3.9 m yr−1) were observed close to a grounded feature near the ice shelf front. Daily time-varying measurements reveal a seasonal melt signal 4 km from the ice shelf front, at an ice draft of 130 m, where the highest daily basal melt rates occurred in summer (up to 5.6 m yr−1). In comparison with wind, air temperatures, and sea ice cover from reanalysis and satellite data, the seasonality in basal melt rates indicates that summer-warmed ocean surface water was pushed by wind beneath the ice shelf front. We observed a different melt regime 35 km into the ice shelf cavity, at an ice draft of 280 m, with considerably lower basal melt rates (annual average of 0.4 m yr−1) and no seasonality. We conclude that warm deep-ocean water at present has a limited effect on the basal melting of Nivlisen. On the other hand, a warming in surface waters, as a result of diminishing sea ice cover, has the potential to increase basal melting near the ice shelf front. Continuous in situ monitoring of Antarctic ice shelves is needed to understand the complex mechanisms involved in ice shelf–ocean interactions

    Tidewater Glacier Surges Initiated at the Terminus

    Get PDF
    TerraSAR-X data were provided by DLR (project OCE1503), and funded by the Conoco Phillips-Lundin Northern Area Program through the CRIOS project (Calving Rates and Impact on Sea level). C.N. acknowledges funding from European Union/ERC (grant 320816) and ESA (project Glaciers CCI, 4000109873/14/I-NB).There have been numerous reports that surges of tidewater glaciers in Svalbard were initiated at the terminus and propagated up‐glacier, in contrast with downglacier‐propagating surges of land‐terminating glaciers. Most of these surges were poorly documented, and the cause of this behavior was unknown. We present detailed data on the recent surges of two tidewater glaciers, Aavatsmarkbreen and Wahlenbergbreen in Svalbard. High‐resolution time‐series of glacier velocities and evolution of crevasse patterns show that both surges propagated up‐glacier in abrupt steps. Prior to the surges, both glaciers underwent retreat and steepening, and in the case of Aavatsmarkbreen, we demonstrate that this was accompanied by a large increase in driving stress in the terminal zone. The surges developed in response to two distinct processes. 1) During the late quiescent phase, internal thermodynamic processes and/or retreat from a pinning point caused acceleration of the glacier front, leading to the development of terminal crevasse fields. 2) Crevasses allowed surface melt‐ and rain‐water to access the bed, causing flow acceleration and development of new crevasses up‐glacier. Upward migration of the surge coincided with stepwise expansion of the crevasse field. Geometric changes near the terminus of these glaciers appear to have led to greater strain heating, water production and storage at the glacier bed. Water routing via crevasses likely plays an important role in the evolution of surges. The distinction between internally triggered surges and externally triggered speed‐ups may not be straightforward. The behavior of these glaciers can be understood in terms of the enthalpy cycle model.Publisher PDFPeer reviewe

    Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    Get PDF
    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanismspublishersversionPeer reviewe

    The ice-free topography of Svalbard

    Get PDF
    We present a first version of the Svalbard ice-free topography (SVIFT1.0) using a mass-conserving approach for mapping glacier ice thickness. SVIFT1.0 is informed by more than 900’000 point-measurements of glacier thickness, totalling almost 8’300 km of thickness profiles. It is publicly available for download. Our estimate for the total ice volume is 6’253km3, equivalent to 1.6cm sea-level rise. The thickness map suggests that 13% of the glacierised area is grounded below sea-level. Thickness values are provided together with a map of error estimates that comprise uncertainties in the thickness surveys as well as in other input variables. Aggregated error estimates are used to define a likely ice-volume range of 5’200-7’400km3. The ice-front thickness of marine-terminating glaciers is a key quantity for ice-loss attribution because it controls the potential ice discharge by iceberg calving into the ocean. We find a mean ice-front thickness of 133m for the archipelago

    Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings

    No full text
    The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet.De ökade temperaturerna i Arktis pĂ„skyndar förlusten av landbaserad is lagrad i glaciĂ€rer och permafrost. Grönlands inlandsis Ă€r den största ismassan pĂ„ norra halvklotet och lagrar ca 10% av allt sötvatten pĂ„ jorden, vilket motsvarar ca 7 meter global havsnivĂ„höjning. För ett par decennier sedan var inlandsisens massbalans dĂ„ligt kĂ€nd och antogs ha liten inverkan pĂ„ dagens havsnivĂ„höjning. Utvecklingen av regionala klimatmodeller och satellitbaserad fjĂ€rranalys av inlandsisen har under de senaste decenniet pĂ„visat en betydande massförlust. För att förutse vilken inverkan inlandsisen har pĂ„ framtida havsnivĂ„höjningar krĂ€vs en förstĂ„else för de fysikaliska processerna som styr dess massbalans och isrörelse. I de sydöstra och centrala vĂ€stra delarna av inlandsisen domineras massförlusten av dynamiska processer i isströmmar som kalvar ut i havet. Massförlusten i de centrala norra, sydvĂ€stra och nordöstra delarna domineras av isytans massbalans. Ytterst lite Ă€r kĂ€nt om hur det hydrologiska systemet ser ut under inlandsisen; hur vĂ€l det hydrologiska systemet Ă€r utvecklat avgör vattnets pĂ„verkan pĂ„ isrörelsen. I denna doktorsavhandling har jag anvĂ€nt markbaserade radarmĂ€tningar för att kartlĂ€gga den subglaciala topografin för en del av den vĂ€stra landbaserade inlandsisen. Denna kunskap Ă€r en viktig förutsĂ€ttning för att kunna modellera den subglaciala hydrologin. Med hjĂ€lp av rumsligt högupplöst data över istjockleken och bottentopografin har jag gjort följande specifika studier: Först har jag analyserat de geologiska och glaciologiska förhĂ„llandena i regionen genom att jĂ€mföra proglacial och subglacial spektralanalys av terrĂ€ngens ytojĂ€mnheter. Sedan har jag analyserat den subglaciala vattenavrinningen och pĂ„visat en potential för att avrinningsomrĂ„dena kan Ă€ndras beroende pĂ„ vattentryckförhĂ„llandena pĂ„ botten. Slutligen har jag tittat mer i detalj pĂ„ englaciala radarstrukturer som ofta observerats i radardata frĂ„n vĂ€stra Grönland. Sammanfattningsvis belyser avhandlingen behovet av inte bara noggranna rumsligt högupplösta subglaciala digitala höjdmodeller, utan Ă€ven regionalt optimerad interpolering nĂ€r detaljerade hydrologiska studier ska utföras pĂ„ Grönlands inlandsis

    Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings

    No full text
    The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet.De ökade temperaturerna i Arktis pĂ„skyndar förlusten av landbaserad is lagrad i glaciĂ€rer och permafrost. Grönlands inlandsis Ă€r den största ismassan pĂ„ norra halvklotet och lagrar ca 10% av allt sötvatten pĂ„ jorden, vilket motsvarar ca 7 meter global havsnivĂ„höjning. För ett par decennier sedan var inlandsisens massbalans dĂ„ligt kĂ€nd och antogs ha liten inverkan pĂ„ dagens havsnivĂ„höjning. Utvecklingen av regionala klimatmodeller och satellitbaserad fjĂ€rranalys av inlandsisen har under de senaste decenniet pĂ„visat en betydande massförlust. För att förutse vilken inverkan inlandsisen har pĂ„ framtida havsnivĂ„höjningar krĂ€vs en förstĂ„else för de fysikaliska processerna som styr dess massbalans och isrörelse. I de sydöstra och centrala vĂ€stra delarna av inlandsisen domineras massförlusten av dynamiska processer i isströmmar som kalvar ut i havet. Massförlusten i de centrala norra, sydvĂ€stra och nordöstra delarna domineras av isytans massbalans. Ytterst lite Ă€r kĂ€nt om hur det hydrologiska systemet ser ut under inlandsisen; hur vĂ€l det hydrologiska systemet Ă€r utvecklat avgör vattnets pĂ„verkan pĂ„ isrörelsen. I denna doktorsavhandling har jag anvĂ€nt markbaserade radarmĂ€tningar för att kartlĂ€gga den subglaciala topografin för en del av den vĂ€stra landbaserade inlandsisen. Denna kunskap Ă€r en viktig förutsĂ€ttning för att kunna modellera den subglaciala hydrologin. Med hjĂ€lp av rumsligt högupplöst data över istjockleken och bottentopografin har jag gjort följande specifika studier: Först har jag analyserat de geologiska och glaciologiska förhĂ„llandena i regionen genom att jĂ€mföra proglacial och subglacial spektralanalys av terrĂ€ngens ytojĂ€mnheter. Sedan har jag analyserat den subglaciala vattenavrinningen och pĂ„visat en potential för att avrinningsomrĂ„dena kan Ă€ndras beroende pĂ„ vattentryckförhĂ„llandena pĂ„ botten. Slutligen har jag tittat mer i detalj pĂ„ englaciala radarstrukturer som ofta observerats i radardata frĂ„n vĂ€stra Grönland. Sammanfattningsvis belyser avhandlingen behovet av inte bara noggranna rumsligt högupplösta subglaciala digitala höjdmodeller, utan Ă€ven regionalt optimerad interpolering nĂ€r detaljerade hydrologiska studier ska utföras pĂ„ Grönlands inlandsis

    Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings

    No full text
    The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet.De ökade temperaturerna i Arktis pĂ„skyndar förlusten av landbaserad is lagrad i glaciĂ€rer och permafrost. Grönlands inlandsis Ă€r den största ismassan pĂ„ norra halvklotet och lagrar ca 10% av allt sötvatten pĂ„ jorden, vilket motsvarar ca 7 meter global havsnivĂ„höjning. För ett par decennier sedan var inlandsisens massbalans dĂ„ligt kĂ€nd och antogs ha liten inverkan pĂ„ dagens havsnivĂ„höjning. Utvecklingen av regionala klimatmodeller och satellitbaserad fjĂ€rranalys av inlandsisen har under de senaste decenniet pĂ„visat en betydande massförlust. För att förutse vilken inverkan inlandsisen har pĂ„ framtida havsnivĂ„höjningar krĂ€vs en förstĂ„else för de fysikaliska processerna som styr dess massbalans och isrörelse. I de sydöstra och centrala vĂ€stra delarna av inlandsisen domineras massförlusten av dynamiska processer i isströmmar som kalvar ut i havet. Massförlusten i de centrala norra, sydvĂ€stra och nordöstra delarna domineras av isytans massbalans. Ytterst lite Ă€r kĂ€nt om hur det hydrologiska systemet ser ut under inlandsisen; hur vĂ€l det hydrologiska systemet Ă€r utvecklat avgör vattnets pĂ„verkan pĂ„ isrörelsen. I denna doktorsavhandling har jag anvĂ€nt markbaserade radarmĂ€tningar för att kartlĂ€gga den subglaciala topografin för en del av den vĂ€stra landbaserade inlandsisen. Denna kunskap Ă€r en viktig förutsĂ€ttning för att kunna modellera den subglaciala hydrologin. Med hjĂ€lp av rumsligt högupplöst data över istjockleken och bottentopografin har jag gjort följande specifika studier: Först har jag analyserat de geologiska och glaciologiska förhĂ„llandena i regionen genom att jĂ€mföra proglacial och subglacial spektralanalys av terrĂ€ngens ytojĂ€mnheter. Sedan har jag analyserat den subglaciala vattenavrinningen och pĂ„visat en potential för att avrinningsomrĂ„dena kan Ă€ndras beroende pĂ„ vattentryckförhĂ„llandena pĂ„ botten. Slutligen har jag tittat mer i detalj pĂ„ englaciala radarstrukturer som ofta observerats i radardata frĂ„n vĂ€stra Grönland. Sammanfattningsvis belyser avhandlingen behovet av inte bara noggranna rumsligt högupplösta subglaciala digitala höjdmodeller, utan Ă€ven regionalt optimerad interpolering nĂ€r detaljerade hydrologiska studier ska utföras pĂ„ Grönlands inlandsis

    Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages

    Get PDF
    Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management.publishedVersio

    Replication Region Analysis Reveals Non-lambdoid Shiga Toxin Converting Bacteriophages

    Get PDF
    Shiga toxin is the major virulence factor of enterohemorrhagic Escherichia coli (EHEC), and the gene encoding it is carried within the genome of Shiga toxin-converting phages (Stx phages). Numerous Stx phages have been sequenced to gain a better understanding of their contribution to the virulence potential of EHEC. The Stx phages are classified into the lambdoid phage family based on similarities in lifestyle, gene arrangement, and nucleotide sequence to the lambda phages. This study explores the replication regions of non-lambdoid Stx phages that completely lack the O and P genes encoding the proteins involved in initiating replication in the lambdoid phage genome. Instead, they carry sequences encoding replication proteins that have not been described earlier, here referred to as eru genes (after EHEC phage replication unit genes). This study identified three different types of Eru-phages, where the Eru1-type is carried by the highly pathogenic EHEC strains that caused the Norwegian O103:H25 outbreak in 2006 and the O104:H4 strain that caused the large outbreak in Europe in 2011. We show that Eru1-phages exhibit a less stable lysogenic state than the classical lambdoid Stx phages. As production of phage particles is accompanied by production of Stx toxin, the Eru1-phage could be associated with a high-virulence phenotype of the host EHEC strain. This finding emphasizes the importance of classifying Stx phages according to their replication regions in addition to their Stx-type and could be used to develop a novel strategy to identify highly virulent EHEC strains for improved risk assessment and management
    corecore