23 research outputs found
Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey
We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to
search for dependencies between SN Ia properties and the projected distance to
the host galaxy center, using the distance as a proxy for local galaxy
properties (local star-formation rate, local metallicity, etc.). The sample
consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at
redshifts below 0.25. The sample is split into two groups depending on the
morphology of the host galaxy. We fit light-curves using both MLCS2k2 and
SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters
for each SN Ia, as well as its residual in the Hubble diagram. We then
correlate these parameters with both the physical and the normalized distances
to the center of the host galaxy and look for trends in the mean values and
scatters of these parameters with increasing distance. The most significant (at
the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c
from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies.
We also find indications that SNe in elliptical galaxies tend to have narrower
light-curves if they explode at larger distances, although this may be due to
selection effects in our sample. We do not find strong correlations between the
residuals of the distance moduli with respect to the Hubble flow and the
galactocentric distances, which indicates a limited correlation between SN
magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5
figures, 8 tables
The GALEX Arecibo SDSS Survey. I. Gas Fraction Scaling Relations of Massive Galaxies and First Data Release
We introduce the GALEX Arecibo SDSS Survey (GASS), an on-going large program
that is gathering high quality HI-line spectra using the Arecibo radio
telescope for an unbiased sample of ~1000 galaxies with stellar masses greater
than 10^10 Msun and redshifts 0.025<z<0.05, selected from the SDSS
spectroscopic and GALEX imaging surveys. The galaxies are observed until
detected or until a low gas mass fraction limit (1.5-5%) is reached. This paper
presents the first Data Release, consisting of ~20% of the final GASS sample.
We use this data set to explore the main scaling relations of HI gas fraction
with galaxy structure and NUV-r colour. A large fraction (~60%) of the galaxies
in our sample are detected in HI. We find that the atomic gas fraction
decreases strongly with stellar mass, stellar surface mass density and NUV-r
colour, but is only weakly correlated with galaxy bulge-to-disk ratio (as
measured by the concentration index of the r-band light). We also find that the
fraction of galaxies with significant (more than a few percent) HI decreases
sharply above a characteristic stellar surface mass density of 10^8.5 Msun
kpc^-2. The fraction of gas-rich galaxies decreases much more smoothly with
stellar mass. One of the key goals of GASS is to identify and quantify the
incidence of galaxies that are transitioning between the blue, star-forming
cloud and the red sequence of passively-evolving galaxies. Likely transition
candidates can be identified as outliers from the mean scaling relations
between gas fraction and other galaxy properties. [abridged]Comment: 25 pages, 12 figures. Accepted for publication in MNRAS. Version with
high resolution figures available at
http://www.mpa-garching.mpg.de/GASS/pubs.ph
The GALEX Arecibo SDSS Survey II: The Star Formation Efficiency of Massive Galaxies
We use measurements of the HI content, stellar mass and star formation rates
in ~190 massive galaxies with stellar masses greater than 10^10 Msun, obtained
from the Galex Arecibo SDSS Survey (GASS) described in Paper I (Catinella et
al. 2010) to explore the global scaling relations associated with the
bin-averaged ratio of the star formation rate over the HI mass, which we call
the HI-based star formation efficiency (SFE). Unlike the mean specific star
formation rate, which decreases with stellar mass and stellar mass surface
density, the star formation efficiency remains relatively constant across the
sample with a value close to SFE = 10^-9.5 yr^-1 (or an equivalent gas
consumption timescale of ~3 Gyr). Specifically, we find little variation in SFE
with stellar mass, stellar mass surface density, NUV-r color and concentration.
We interpret these results as an indication that external processes or feedback
mechanisms that control the gas supply are important for regulating star
formation in massive galaxies. An investigation into the detailed distribution
of SFEs reveals that approximately 5% of the sample shows high efficiencies
with SFE > 10^-9 yr^-1, and we suggest that this is very likely due to a
deficiency of cold gas rather than an excess star formation rate. Conversely,
we also find a similar fraction of galaxies that appear to be gas-rich for
their given specific star-formation rate, although these galaxies show both a
higher than average gas fraction and lower than average specific star formation
rate. Both of these populations are plausible candidates for "transition"
galaxies, showing potential for a change (either decrease or increase) in their
specific star formation rate in the near future. We also find that 36+/-5% of
the total HI mass density and 47+/-5% of the total SFR density is found in
galaxies with stellar mass greater than 10^10 Msun. [abridged]Comment: 18 pages, 11 figures. Accepted for publication in MNRAS. GASS
publications and released data can be found at
http://www.mpa-garching.mpg.de/GASS/index.ph
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications
This work was supported by a restricted research grant of Bayer AG
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication