787 research outputs found

    Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    Get PDF
    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    Recommendation for the use of newly introduced Tdap vaccine in Korea

    Get PDF
    Pertussis is an acute respiratory infection characterized by paroxysmal cough and inspiratory whoop for over 2 weeks. The incidence of pertussis has decreased markedly after the introduction of DTwP/DTaP vaccine, but the incidence of pertussis has increased steadily among young infant and among adolescents and adults in many countries. Td vaccine was used in this age group but the increase in pertussis has lead to the development of a Tdap vaccine. The Tdap vaccine is a Td vaccine with a pertussis vaccine added and is thought to decrease the incidence and transmission of pertussis in the respective age group. In Korea, two products are approved by the KOREA FOOD & DRUG ADMINISTRATION, which are ADACEL™ (Sanofi-Pasteur, Totonto, Ontario, Canada) and BOOSTRIX® (GlaxoSmithKline Biologicals, Rixensart, Belgium) for those aged between 11-64. This report summarizes the recommendations approved by the Committee on Infectious Diseases, the Korean Pediatric Society

    Dynamics of Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System of Cape Cod (Massachusetts, USA)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 12 (2011): 26–38, doi:10.1016/j.hal.2011.08.009.Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS - Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for “surgical” closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed.This work was supported by NOAA Grant NA06OAR4170021, NPS Grant H238015504 and by the Woods Hole Center for Oceans and Human Health through NSF Grants OCE-0911031 and OCE-0430724 and NIEHS Grant 1P50-ES01274201. B.G.C. was supported by a Xunta de Galicia Ángeles Alvariño fellowship and the Stanley W. Watson Chair for Excellence in Oceanography under a Postdoctoral program at the Woods Hole Oceanographic Institution

    Reduction of Plasma Gelsolin Levels Correlates with Development of Multiple Organ Dysfunction Syndrome and Fatal Outcome in Burn Patients

    Get PDF
    BACKGROUND: Depletion of the circulating actin-binding protein, plasma gelsolin (pGSN) has been described in critically ill surgical patients. We hypothesized that the extent of pGSN reduction might correlate with different outcome of burn patients. The study was performed to evaluate the prognostic implications of pGSN levels on the development of multiple organ dysfunction syndrome (MODS) and fatal outcome in a group of severely burn patients. METHODS AND FINDINGS: 95 patients were included, and they were divided into three groups with different burn area: group I (n = 33), group II (n = 32) and group III (n = 30). According to whether there was development of MODS or not, patients were divided into MODS group (n = 28) and none-MODS group (n = 67); then the patients with MODS were further divided into non-survivor group (n = 17) and survivor group (n = 11). The peripheral blood samples were collected on postburn days (PBD) 1, 3, 7, 14, and 21. The levels of pGSN were determined and T cells were procured from the blood. The contents of cytokines (IL-2, IL-4 and IFN-γ) released by T cells were also measured. The related factors of prognosis were analyzed by using multivariate logistic regression analysis. The results showed that pGSN concentrations, as well as the levels of IL-2 and IFN-γ, decreased markedly on PBD 1-21, whereas, the levels of IL-4 increased markedly in all burn groups as compared with normal controls (P<0.05 or P<0.01), and there were obviously differences between group I and group III (P<0.05 or P<0.01). The similar results were found in MODS patients and the non-survivor group as compared with those without MODS and the survival group on days 3-21 postburn (P<0.05 or P<0.01). Moreover, as the pGSN levels decreased, the incidence of septic complication as well as MODS remarkably increased. CONCLUSIONS: pGSN levels appear to be an early prognostic marker in patients suffering from major burns

    A retrospective study of PBDEs and PCBs in human milk from the Faroe Islands

    Get PDF
    BACKGROUND: Persistent organic pollutants (POPs) in wildlife and humans remain a cause of global concern, both in regard to traditional POPs, such as the polychlorinated biphenyls (PCBs), and emerging POPs, such as the polybrominated diphenyl ethers (PBDEs). To determine the time related concentrations, we analyzed human milk for these substances at three time points between 1987 and 1999. Polychlorobiphenylols (OH-PCBs), the dominating class of PCB metabolites, some of which are known to be strongly retained in human blood, were also included in the assessment. METHODS: We obtained milk from the Faroe Islands, where the population is exposed to POPs from their traditional diet (which may include pilot whale blubber). In addition to three pools, nine individual samples from the last time point were also analyzed. After cleanup, partitioning of neutral and acidic compounds, and separation of chemical classes, the analyses were carried out by gas chromatography and/or gas chromatography/mass spectrometry. RESULTS: Compared to other European populations, the human milk had high PCB concentrations, with pool concentrations of 2300 ng/g fat 1987, 1600 ng/g fat in 1994, and 1800 ng/g fat in 1999 (based on the sum of eleven major PCB congeners). The nine individual samples showed great variation in PCB concentrations. The OH-PCBs were present in trace amounts only, at levels of approximately 1% of the PCB concentrations. The PBDE concentrations showed a clear increase over time, and their concentrations in human milk from 1999 are among the highest reported so far from Europe, with results of individual samples ranging from 4.7 to 13 ng/g fat CONCLUSION: Although remote from pollution sources, the Faroe Islands show high concentrations of POPs in human milk, particularly PCBs, but also PBDEs. The PBDEs show increasing concentrations over time. The OH-PCB metabolites are poorly transferred to human milk, which likely is related to their acidic character

    Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver

    Get PDF
    MicroRNA-122 (miR-122) is an abundant liver-specific miRNA, implicated in fatty acid and cholesterol metabolism as well as hepatitis C viral replication. Here, we report that a systemically administered 16-nt, unconjugated LNA (locked nucleic acid)-antimiR oligonucleotide complementary to the 5′ end of miR-122 leads to specific, dose-dependent silencing of miR-122 and shows no hepatotoxicity in mice. Antagonism of miR-122 is due to formation of stable heteroduplexes between the LNA-antimiR and miR-122 as detected by northern analysis. Fluorescence in situ hybridization demonstrated uptake of the LNA-antimiR in mouse liver cells, which was accompanied by markedly reduced hybridization signals for mature miR-122 in treated mice. Functional antagonism of miR-122 was inferred from a low cholesterol phenotype and de-repression within 24 h of 199 liver mRNAs showing significant enrichment for miR-122 seed matches in their 3′ UTRs. Expression profiling extended to 3 weeks after the last LNA-antimiR dose revealed that most of the changes in liver gene expression were normalized to saline control levels coinciding with normalized miR-122 and plasma cholesterol levels. Combined, these data suggest that miRNA antagonists comprised of LNA are valuable tools for identifying miRNA targets in vivo and for studying the biological role of miRNAs and miRNA-associated gene-regulatory networks in a physiological context

    Exploring and yet failing less: learning from past and current exploration in R&D

    Get PDF
    Exploration is both an important part of a firm’s innovation strategy and an activity that involves a high degree of uncertainty. This article investigates a duality in the exploratory component of R&D activity with regard to innovation failure: while exploration is likely to increase firms’ exposure to failure, it might also provide learning opportunities to reduce failure. Our study contributes to the innovation management and organizational learning literatures by demonstrating the value of exploratory R&D for enabling two types of learning mechanisms. The first, experience-based learning, is based on the learning opportunities derived from accumulated experience in exploratory R&D: it involves improvements to procedures associated with experimentation and provides guidance for current exploration and to navigate the search space. The second, inferential-based learning, is based on the learning opportunities derived from current exploratory R&D efforts, which are associated with improved interpretation of ill-defined problems and timely responses to unstructured information. We draw on a longitudinal data set of 2226 Spanish manufacturing companies and show that, when past experience is associated with current exploration, innovation failure in the conception phase is reduced. We also find an inverted U-shaped relation between current exploratory R&D and innovation failure, in both the conception and implementation phases of innovation activities, showing that increasing levels of investment in current exploration activities attenuate the initial positive association between exploratory R&D and failure
    corecore