133 research outputs found

    "Developmental studies of the murine homeobox gene - hoxa-9”

    Get PDF
    Cell patterning during embryogenesis is essential for establishing the identity of the developing body plan. Hox genes are fundamental regulators of tissue organisation along the anterior-posterior body axis of the developing embryo. These homeodomain-containing proteins act as transcription factors during normal development. The function of the homeodomain is to bind sequence-specific DNAmotifs which allows either activation or repression of downstream effector genes, which consequently results in the control of tissue-specific determination and differentiation. Aberrant expression of such Hox genes, including Hoxa-9 can result in homeotic transformations leading to phenotypic malformations and oncogenesis. However the normal function of Hoxa-9 is poorly understood. This study explored the potential role for Hoxa-9 in normal development and differentiation. An in situ hybridisation approach was taken to define the expression of Hoxa-9 in the developing mouse. Hoxa-9 was found to expressed in a temporarily and spatially regulated manner, in particular being detected in the developing cardiac atria, ventricles and cardiac vessels during E9.5-E12 stages of development. The expression of this homeotic gene during in vitro differentiation of embryonic stem cells into cardiomyocytes and haematopoietic cells demonstrated a profile that correlated with the emergence of these cell types. The functioning relationship between Hoxa-9 expression and lineage commitment was Airther explored using over-expression in embryonic stem cells. A potential role for Hoxa-9 in normal development is discussed

    The Genetic Regulation of Aortic Valve Development and Calcific Disease

    Get PDF
    Heart valves are dynamic, highly organized structures required for unidirectional blood flow through the heart. Over an average lifetime, the valve leaflets or cusps open and close over a billion times, however in over 5 million Americans, leaflet function fails due to biomechanical insufficiency in response to wear-and-tear or pathological stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes are associated with dysregulation of several molecular pathways important for valve development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic regulators. In this review, we discuss the multifactorial mechanisms that contribute to CAVD pathogenesis and the potential of targeting these for the development of novel, alternative therapeutics beyond surgical intervention

    Sox9 Transcriptionally Represses Spp1 to Prevent Matrix Mineralization in Maturing Heart Valves and Chondrocytes

    Get PDF
    Sox9 is an SRY-related transcription factor required for expression of cartilaginous genes in the developing skeletal system and heart valve structures. In contrast to positively regulating cartilaginous matrix, Sox9 also negatively regulates matrix mineralization associated with bone formation. While the transcriptional activation of Sox9 target genes during chondrogenesis has been characterized, the mechanisms by which Sox9 represses osteogenic processes are not so clear. Using ChIP-on-chip and luciferase assays we show that Sox9 binds and represses transactivation of the osteogenic glycoprotein Spp1. In addition, Sox9 knockdown in post natal mouse heart valve explants and rib chondrocyte cultures promotes Spp1 expression and matrix mineralization, while attenuating expression of cartilage genes Type II Collagen and Cartilage Link Protein. Further, we show that Spp1 is required for matrix mineralization induced by Sox9 knockdown. These studies provide insights into the molecular mechanisms by which Sox9 prevents pathologic matrix mineralization in tissues that must remain cartilaginous

    Temporal Progression of Aortic Valve Pathogenesis in a Mouse Model of Osteogenesis Imperfecta.

    Get PDF
    Organization of extracellular matrix (ECM) components, including collagens, proteoglycans, and elastin, is essential for maintaining the structure and function of heart valves throughout life. Mutations in ECM genes cause connective tissue disorders, including Osteogenesis Imperfecta (OI), and progressive debilitating heart valve dysfunction is common in these patients. Despite this, effective treatment options are limited to end-stage interventions. Mice with a homozygous frameshift mutation in col1a2 serve as a murine model of OI (oim/oim), and therefore, they were used in this study to examine the pathobiology of aortic valve (AoV) disease in this patient population at structural, functional, and molecular levels. Temporal echocardiography of oim/oim mice revealed AoV dysfunction by the late stages of disease in 12-month-old mice. However, structural and proteomic changes were apparent much earlier, at 3 months of age, and were associated with disturbances in ECM homeostasis primarily related to collagen and proteoglycan abnormalities and disorganization. Together, findings from this study provide insights into the underpinnings of late onset AoV dysfunction in connective tissue disease patients that can be used for the development of mechanistic-based therapies administered early to halt progression, thereby avoiding late-stage surgical intervention

    Myocardial Alternative RNA Splicing and Gene Expression Profiling in Early Stage Hypoplastic Left Heart Syndrome

    Get PDF
    Hypoplastic Left Heart Syndrome (HLHS) is a congenital defect characterized by underdevelopment of the left ventricle and pathological compensation of the right ventricle. If untreated, HLHS is invariably lethal due to the extensive increase in right ventricular workload and eventual failure. Despite the clinical significance, little is known about the molecular pathobiological state of HLHS. Splicing of mRNA transcripts is an important regulatory mechanism of gene expression. Tissue specific alterations of this process have been associated with several cardiac diseases, however, transcriptional signature profiles related to HLHS are unknown. In this study, we performed genome-wide exon array analysis to determine differentially expressed genes and alternatively spliced transcripts in the right ventricle (RV) of six neonates with HLHS, compared to the RV and left ventricle (LV) from non-diseased control subjects. In HLHS, over 180 genes were differentially expressed and 1800 were differentially spliced, leading to changes in a variety of biological processes involving cell metabolism, cytoskeleton, and cell adherence. Additional hierarchical clustering analysis revealed that differential gene expression and mRNA splicing patterns identified in HLHS are unique compared to non-diseased tissue. Our findings suggest that gene expression and mRNA splicing are broadly dysregulated in the RV myocardium of HLHS neonates. In addition, our analysis identified transcriptome profiles representative of molecular biomarkers of HLHS that could be used in the future for diagnostic and prognostic stratification to improve patient outcome

    Dissociation of pulse wave velocity and aortic wall stiffness in diabetic db/db mice: The influence of blood pressure.

    Get PDF
    Introduction: Vascular stiffness is a predictor of cardiovascular disease and pulse wave velocity (PWV) is the current standard for measuring in vivo vascular stiffness. Mean arterial pressure is the largest confounding variable to PWV; therefore, in this study we aimed to test the hypothesis that increased aortic PWV in type 2 diabetic mice is driven by increased blood pressure rather than vascular biomechanics. Methods and Results: Using a combination of in vivo PWV and ex vivo pressure myography, our data demonstrate no difference in ex vivo passive mechanics, including outer diameter, inner diameter, compliance (Db/db: 0.0094 ± 0.0018 mm2/mmHg vs. db/db: 0.0080 ± 0.0008 mm2/mmHg, p \u3e 0.05 at 100 mmHg), and incremental modulus (Db/db: 801.52 ± 135.87 kPa vs. db/db: 838.12 ± 44.90 kPa, p \u3e 0.05 at 100 mmHg), in normal versus diabetic 16 week old mice. We further report no difference in basal or active aorta biomechanics in normal versus diabetic 16 week old mice. Finally, we show here that the increase in diabetic in vivo aortic pulse wave velocity at baseline was completely abolished when measured at equivalent pharmacologically-modulated blood pressures, indicating that the elevated PWV was attributed to the concomitant increase in blood pressure at baseline, and therefore stiffness. Conclusions: Together, these animal model data suggest an intimate regulation of blood pressure during collection of pulse wave velocity when determining in vivo vascular stiffness. These data further indicate caution should be exerted when interpreting elevated PWV as the pure marker of vascular stiffness

    To what extent luxury retailing can be smart?

    Get PDF
    The aim of this paper is to explore how luxury brands use new technologies in the context of smart retailing. Building on qualitative data from multiple cases from the luxury industry, our analysis reveals that this sector is conscious of the benefits of using smart technologies as marketing tools, while the effective use of these innovative systems is still limited. However, studies on innovation forces affecting the retail industry are still limited in luxury sectors. The study provides an empirical contribution to the emerging topic of smart retailing with an emphasis on the luxury sector through its in-depth investigation of the usage of smart technologies by the firms studied

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Postnatal and Adult Aortic Heart Valves Have Distinctive Transcriptional Profiles Associated With Valve Tissue Growth and Maintenance Respectively

    No full text
    Heart valves are organized connective tissues of high mechanical demand. They open and close over 100,000 times a day to preserve unidirectional blood flow by maintaining structure-function relationships throughout life. In affected individuals, structural failure compromises function and often leads to regurgitant blood flow and progressive heart failure. This is most common in degenerative valve disease due to age-related wear and tear, or congenital malformations. At present, the only effective treatment of valve disease is surgical repair or replacement and this is often impermanent and requires anti-coagulation therapy throughout life. Therefore, there is a critical need to discover new alternatives. A promising therapeutic area is tissue regeneration and in non-valvular tissues this requires a tightly regulated genetic “growth program” involving cell proliferation. To explore this in heart valves, we performed RNA-seq analysis to compare transcriptional profiles of aortic valve tissue isolated from mice during stages of growth (postnatal day (PND) 2) and adult maintenance (4 months). Data analysis reveals distinct mRNA profiles at each time point and pathway ontology identifies associated changes in biological functions. The PND2 aortic valve is characterized by extensive cell proliferation and expression of mRNAs related to the extracellular matrix (ECM). At 4 months, proliferation is not significant and a differential set of ECM-related genes are expressed. Interestingly there is enrichment of the defense response biological process at this later time point. Together, these data highlight the unique transcriptome of the postnatal valve during stages of growth and maturation, as well as biological functions associated with adult homeostatic valves. These studies create a platform for future work exploring the molecular programs altered in the onset of heart valve disease after birth and provide insights for the development of mechanistic-based therapies

    Isolation of Murine Valve Endothelial Cells

    No full text
    corecore