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Heart valves are dynamic, highly organized structures required for unidirectional blood

flow through the heart. Over an average lifetime, the valve leaflets or cusps open

and close over a billion times, however in over 5 million Americans, leaflet function

fails due to biomechanical insufficiency in response to wear-and-tear or pathological

stimulus. Calcific aortic valve disease (CAVD) is the most common valve pathology and

leads to stiffening of the cusp and narrowing of the aortic orifice leading to stenosis

and insufficiency. At the cellular level, CAVD is characterized by valve endothelial cell

dysfunction and osteoblast-like differentiation of valve interstitial cells. These processes

are associated with dysregulation of several molecular pathways important for valve

development including Notch, Sox9, Tgfβ, Bmp, Wnt, as well as additional epigenetic

regulators. In this review, we discuss the multifactorial mechanisms that contribute to

CAVD pathogenesis and the potential of targeting these for the development of novel,

alternative therapeutics beyond surgical intervention.

Keywords: aortic valve calcification, extracellular matrix, valve interstitial cell, valve endothelial cell,

hemodynamics, epigenetics, signaling, development

INTRODUCTION

Two sets of cardiac valves open and close over 100,000 times a day to maintain unidirectional
blood flow through the heart. The atrioventricular (AV) valves (mitral, tricuspid) regulate flow
from the atria into the ventricular chambers, while the semilunar valves (aortic, pulmonary) guide
flow out of the ventricles into the pulmonary and systemic circulation. This necessitate function
of the valves is largely facilitated by a highly organized connective tissue, composed of stratified
layers of extracellular matrix (ECM), and valve interstitial and endothelial cell populations that
molecularly communicate (Figure 1A). Establishing and maintaining heart valve connective tissue
is essential for structure-function relationships, and aberrations in embryonic development or adult
homeostasis underlie dysfunction and disease that affect more than 5 million Americans each
year (1, 2).

In contrast to healthy valve structures, diseased valves are characterized by loss of ECM
organization and injury to, or dysfunction of valve cell populations (1). Calcific aortic valve
disease (CAVD) is the most common form of valvular pathology and the third most common
cardiovascular disease following hypertension and ischemic heart disease (3–5). The disease is a
significant economic and healthcare burden contributing to over 15,000 deaths in the US annually
(6). The pathogenesis of affected aortic valves is characterized by ectopic development of calcium

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201623767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2018.00162
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2018.00162&domain=pdf&date_stamp=2018-11-06
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:joy.lincoln@nationwidechildrens.org
https://doi.org/10.3389/fcvm.2018.00162
https://www.frontiersin.org/articles/10.3389/fcvm.2018.00162/full
http://loop.frontiersin.org/people/604140/overview
http://loop.frontiersin.org/people/511481/overview


Menon and Lincoln The Regulation of Valve Calcification

nodules on the aortic surface of the valve cusp, annulus, or
both (Figure 1B). The resulting sclerotic aortic valve exhibits
compromised function by virtue of limited movement which
progresses to calcific aortic stenosis over time (7). Over 2.5
million individuals are affected by aortic stenosis which can lead
to significantly impaired cardiac function and if left untreated,
death. CAVD and aortic stenosis is most prevalent in the aging
population but is also observed during earlier stages of life in
individuals born with bicuspid aortic valve (BAV) disease.

The underlying etiology of CAVD is largely unknown. While
BAV is proven hereditary, there is limited information regarding
genetic contributions to CAVD [reviewed in (8)]. Risk factors
are known and similar to most other cardiovascular diseases
(hypertension, tobacco-use, hypercholesterolemia, etc.), however
the mechanisms that underlie calcific nodule formation on the
aortic cusp surface following exposure to risk factors are largely
unknown. The hemodynamic environment of the aortic valve
is known to play a role in valve pathogenesis, and studies
using animal and in vitro models have identified aberrations
in critical signaling pathways required for valve formation
in CAVD [reviewed in (8)]. However, the field has yet to
delineate cause and effect of these multifactorial contributors.
The current limitations in understanding the etiology of CAVD
has hindered the development of alternative therapeutics beyond
surgery, to prevent or regress CAVD. Therefore, further basic
science research is needed to decipher the cellular and molecular
processes underlying the pathology of CAVD and translate these
discoveries into mechanistic-based pharmacological therapies to
reestablish valve structure-function relationships.

HEALTHY HEART VALVE
STRUCTURE-FUNCTION RELATIONSHIPS

The mature valve structures are composed of leaflets (AV) or
cusps (semilunar) with supporting structures. In the AV position,
the mitral valve consists of two leaflets, while the tricuspid
possesses three, and both display external supporting chordae
tendineae that attach the underside of the valve leaflet to the
papillary muscles within the ventricle (9). The three cusps of the
semilunar valves (aortic, pulmonic) lack external support, but a
unique supporting structure within the aortic roots in the form
of a fibrous annulus has been described (9). The “Lub-Dub” noise
of the heart beat is attributed to sequential closing of the AV and
semilunar valve leaflets/cusps, respectively, during the cardiac
cycle and this is driven by the valve hemodynamics. In systole, the
aortic valve cusps open and experience oscillatory flow patterns
on the aortic surface and laminar shear on the ventricular side
with overall low stress, while the mitral valve leaflets are closed
to prevent back flow into the left atrium and therefore pressure
is high on the ventricular side. In contrast during diastole, the
closed aortic cusps create high pressure and tensile stretch on the
aortic and ventricular surfaces, respectively, while open mitral
leaflets experience laminar shear flow and reduced pressure
(10). This coordinated movement of the valve leaflets/cusps and
their supporting structures in response to the hemodynamic
environment is attributed to a highly specialized connective

tissue that provides all the necessary biomechanical properties
during diastole and systole. The extracellular component of the
valve connective tissue is largely composed of three stratified
layers of matrix arranged according to blood flow (see Figure 1A)
(1, 11, 12). The cross-sectional structure of healthy valve leaflets
contains the fibrosa layer located on the ventricular side of the AV
valve leaflets and atrial side of the semilunar valves, away from
blood flow. This layer is predominantly composed of bundles
of collagen fibers aligned along the circumferential direction of
the free edge of the leaflets (13–16). This arrangement provides
tensile strength and flexibility to the valve leaflet/cusp during
opening, while transmitting forces to promote coaptation of the
leaflets in the closed position (17–19). Adjacent to the fibrosa
is the spongiosa layer, with a lower abundance of collagens,
high prevalence of proteoglycans, and water retention. This
composition provides a more compressible matrix, allowing the
valve to geometrically “flex” and absorb high force (16, 20).
Finally, the layer adjacent to blood flow is termed the atrialis
(AV) or ventricularis (semilunar) and largely consists of radially
orientated elastin fibers that allow for high deformations to
facilitate tissue movement as the valve leaflet opens and recoils
during closure (21–23). In themitral position, histological studies
of human tissue report an additional fourth layer of elastin on the
opposing side to the atrialis, which presumably allows for further
flexibility (11). The AV chordae tendinae are composed of a
cylindrical collagen core within an elastin sheath and exhibit high
viscoelastic properties, while the “built-in” supporting structures
of the semilunar valves contain similar extracellular matrix
(ECM) components only arranged within the underside of the
cusp structure (1, 24, 25). The overall protein contents of the
valve matrix is adaptive and has been shown to remodel in
response to normal wear-and-tear and aging and this is thought
be beneficial in maintaining structure-function relationships
throughout life (26).

In addition to the extracellular component of the valve, the
mature leaflet/cusp contains several differential cell populations.
The valve interstitial cells (VICs) are the most abundant cell type
and have been described as heterogeneous and fibroblast-like in
nature (27). In the healthy adult, VICs express markers such as
Vimentin (28) and are considered quiescent as proliferation rates
are comparatively low (∼1%), functioning to mediate turnover
of the valve ECM in response to general wear-and-tear (27, 29,
30). Previous studies have identified sub-populations of VICs
based on molecular profiles (28), and this may be attributed to
differential embryonic origins of this cell population (described
below), or potential mechanical influences from the ECM or
hemodynamic environment as described (31). Although VICs
from the four heart valves all exhibit a fibroblast-like phenotype
(32), those isolated from left-side valves (aortic and mitral)
exhibit a greater stiffness compared to those isolated from right-
side valves (33, 34). Furthermore, it was shown that aortic VICs
exhibit greater capability of contracting the ECM relative to those
isolated from pulmonary valves (34), highlighting the influence of
the hemodynamic environment on VIC behavior.

In addition to VICs, the valve leaflet/cusp is encapsulated by
a single layer of valve endothelial cells (VECs) that form a tight
barrier between the circulating blood, and the underlying cellular

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 November 2018 | Volume 5 | Article 162

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Menon and Lincoln The Regulation of Valve Calcification

FIGURE 1 | Schematic representation of a healthy and calcified aortic valve cusp. Cross sectional representation of a heart highlighting the aortic valve (box). (A) A

healthy aortic valve cusp structure consists of three layers of extracellular matrix (ECM); the ventricularis (elastin fibers, black); the spongiosa (proteoglycans, blue); and

the fibrosa (collagens, yellow). In addition to the matrix, the valve cusp is encapsulated by a single layer of valve endothelial cells (VECs), while valve interstitial cells

(VICs) populate the core of the cusp. (B) A calcified valve cusp is thickened with abrogations in ECM organization including fragmented elastin fibers and increased

collagen content. In addition, calcific nodules form on the fibrosa surface of the cusp (off-white).

and extracellular contents of the valve. VECs are dynamic, and
molecular and phenotypic profiles are side-, and age-dependent
(30, 35–38). Furthermore, there is increasing evidence to suggest
that VEC function has important implications in regulating VIC
behavior to maintain valve homeostasis and prevent disease (39–
41). A relatively minor contributor to the valve cell population
includes extra-cardiac hematopoietic or bone marrow-derived
cells (42, 43). Under homeostatic conditions, these cells make
up ∼1–18% of the total valve cell population, depending on
age and valve position, and maintain CD45 expression with
co-expression of VIC markers including Vimentin (44). The
function of these extra-cardiac cells in healthy valves remains
elusive but numbers almost double in mouse models of valve
disease (45, 46). Together, it’s the integrated network of ECM
components and valve cell populations that provide the necessary
architecture for efficient valve function throughout life.

HEART VALVE DEVELOPMENT

Formation of highly organized mature heart valves begins
during embryogenesis when the primitive heart tube undergoes

rightward looping and the cardiac jelly expands at the outflow
tract (OFT) and the AV canal forming local swellings of
endocardial cushions. At this time, a subset of endocardial cells
overlying the cushions undergo endothelial-to-mesenchymal
transformation (EMT) giving rise to a population of highly
proliferative and migratory, valve precursor cells [reviewed in
(47)]. EMT is a tightly regulated process important not only for
valvulogensis, but embryonic development and differentiation
in general. Early experiments employing the chick embryo as
a model system demonstrated that explants of AV cushion
consisting of endocardium and myocardium exhibited EMT
when grown on collagen gels (48). Furthermore, there seems to
be a need for specialized spatial signaling to induce EMT, as it was
shown that only the endocardium of AV and OFT cushions, but
not ventricular endocardium, undergoes EMT (49, 50).While the
mechanisms of cushion development are conserved between AV
andOFT valves, EMT inOFT cushions lags behind that occurring
in the AV cushions. While endothelial-derived cells contribute
the majority of mesenchyme cells within the cushions (51, 52),
there is additional contribution from the cardiac neural crest
and secondary heart field cells in the OFT position (53–55), and
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epicardial-derived cells are present in the parietal leaflets of the
AV valves (56).

Many signaling pathways have been implicated in EMT and
these cross-talk with each other to form complex molecular
networks between differential cell types. The process is largely
initiated by Transforming Growth Factor-β (Tgfβ) (47, 57–59),
and Bone Morphogenetic Protein (BMP) (57, 60–68) signaling
pathways emanating from the adjacent myocardium, as well
as Notch predominant in valve endothelial cells (69–77). Wnt
signaling in the endothelial-lineage is also critical for early
stages of EMT (58, 78). Similar pathways (Tgfβ, Bmp, Wnt)
also play a role in remodeling and sculpting the endocardial
cushions as they morph into valve primordia during later
stages of development (79–83). Aside from growth factors,
the transcription factor Sox9 is required for proliferation of
newly transformed mesenchyme cells and remodeling of the
matrix, but not initiation of EMT (84, 85). In addition to
molecular signaling, the hemodynamic environment is important
for endocardial cushion formation and it is well-established
that the endothelium, via mechanotransduction, senses and
responds to hemodynamics (86) via the rearrangement of
the cytoskeleton and alignment of these cells in a direction
parallel to flow (87). In vitro studies employing a 3D tubular
culture have identified the role of shear stress in the expression
and deposition of fibrous ECM proteins in both AV and
OFT cushions (88, 89). Furthermore, several in vivo studies
reinforce the importance of maintaining normal hemodynamic
stimuli during valve development, as demonstrated by the
molecular/cellular responses that go awry when intracardiac
hemodynamics are perturbed leading to a myriad of congenital
heart defects (90–106). Defects in EMT or failure to establish
the valve precursor cell pool during embryogenesis as a result
of molecular abrogations or hemodynamic disturbances is lethal
in mice and likely detrimental to human development. However,
those affected by more subtle defects in post-EMT growth and
maturation survive, but such disturbances could underlie valve
malformations present at birth or acquired disease manifested
later in life.

CALCIFIC AORTIC VALVE DISEASE

Calcific aortic valve disease (CAVD) is the most predominant
form of valve pathology affecting more than 5.2 million people
in the US, particularly those over the age of 65 (107). In 2013,
50,222 deaths occurred due to valvular heart diseases in the USA,
out of which 67.5% were due to aortic valve disorders (6). CAVD
is an active cellular-driven pathological process beginning with
alterations in the aortic valve cusps (sclerosis) and culminating
in stenosis (108, 109). Risk factors for CAVD have been well-
established and are shared with many other cardiovascular
diseases (110). Histologically, sclerotic calcified valves are
thickened with alterations in the composition and distribution
of ECM components including fragmented elastin fibers and
increased collagen fiber content (111). In addition, deposits of
calcium and hydroxyapatite develop on the aortic surface of the
cusp leading to bone-like, rigid nodules that limit cuspmovement

(Figure 1B) (112). The cellular mechanisms underlying the
formation of calcific nodules within the valve tissue are not clear
and likely diverse. Based on expression studies, it is considered
that residing VICs are activated similar to myofibroblasts, and
undergo transdifferentiation toward an osteoblast-like cell via a
process similar to endochondral ossification. This is concluded
from studies in calcified valves excised from humans that show
ectopic expression of osteogenic transcription factors including
Runx2, as well as mineralized matrix proteins (Matrix Gla
Protein, Osteopontin, Bone Sialoprotein) commonly observed in
bone (113–115). Histological analysis indicates that in CAVD,
osteogenic-like changes (or increased Runx2) occurs in subset
of VICs and not the entire population. Some attribute the
pathological cell specificity to embryonic origin (116), others
suggest that exogenous extra-cardiac cells play a role (117, 118),
and there is no doubt that the hemodynamic environment
influences formation of calcific nodules (119–121). While the
field has been given a taster to these ideas, more in-depth
studies are needed. In parallel with VIC pro-osteogenic fate
changes in CAVD, studies have shown a significant contribution
of extracellular vesicles (EVs) to the formation of calcific nodules
at localized sites within the valve structure, similar to that
observed in medial arterial calcifications and atherosclerotic
intimal plaques (122), which suggest that the process of VIC
differentiation and calcific nodule formation is multi-faceted.

CAVD is largely considered an acquired disease that develops
later in life, however studies in mice might suggest that
pathogenesis might stem from perturbations in embryonic
development. Homozygous loss of Notch1, associated ligands
or signaling mediators during gastrulation leads to embryonic
lethality due to endocardial cushion defects as a result of defective
EMT (69–77). Heterozygous mice are viable but when fed
Western diet, develop CAVD (123), and cross breeding with
the Nos3−/− line increases this incidence with the additional
development of BAV (40). In addition, Notch1 is the most
predominant disease-causing mutation in humans affected by
calcification of the aortic valves (124). Similarly, loss of Sox9 in
endothelially-derived cells of the embryo causes early lethality
by embryonic day (E)12.5 associated with hypoplasia of the
endocardial cushions due to defects in proliferation of newly
transformed mesenchyme cells following otherwise normal EMT
(85). Despite this, heterozygotes have a normal lifespan, but
develop CAVD phenotypes by 3 months of age, even without
the addition of Western diet (85, 125). In vivo mutations, or
targeted loss of function in vitro are sufficient to cause EMT
defects [reviewed in (8)], and endothelial-specific deletion of
Tgfβ1 promotes osteogenic differentiation of adult VICs and
calcification (41). These studies suggest that Notch1, Sox9, and
Tgfβ1 are required for valvulogenesis and viable mice with
targeted reduced function develop valve disease later in life,
potentially due to subtle embryonic defects that are manifested
over time. BMP and Wnt are two signaling pathways previously
shown to be activated in calcified valves from human patients,
mouse models and cultured VICs (113, 126–137). However,
mutations in Wnt or BMP signaling mediators have not been
shown to be causative of CAVD, although tissue-specific deletion
of the BMP receptor Alk2 underlies BAV in mice (138).
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The question beckons if “re-activation” of these developmental
programs play a role in CAVD pathogenesis or if these are a read
out of the pathological state.

While several molecular pathways have been implicated in
CAVD, the cellular mechanisms that underlie osteoblast-like
changes in resident VICs have not been extensively explored.
During early stages of CAVD, endothelial dysfunction has
been reported (30, 139). In the vasculature, this pathological
process has been well characterized, largely in the setting of
atherosclerosis and plaque formation, however, in the valves,
endothelial dysfunction is less well described. In a recent study,
it was demonstrated that aging, a known risk factor of CAVD, is
associated with reduced nitric oxide bioavailability (or increased
reactive oxygen species) and decreased proliferation of VECs,
in addition to enhanced permeability of the endothelial cell
lining. Morphologically, VECs change in size and shape, and
express distinct molecular profiles with aging (30). In the last
5 years, there have been an increasing number of studies to
show that VECs are protective against calcific nodule formation
by porcine aortic valve interstitial cells (pAVICs) in vitro and
perturbations in VEC-VIC communication promote the onset of
calcification (40, 41, 140). Protective paracrine factors emanating
from VECs include nitric oxide (40) and Tgfβ1 (41) and their
targets in VICs (and potentially VECs) have been identified as,
but are not limited to Notch1 (40) and Sox9 (41), respectively
(Figure 2A). There are likely many other pathways that exist
between these two cell types that regulate cellular function. A
previous study by Hjortnaes et al. demonstrated in vitro that
VECs prevent activation of VICs through currently unknown
mechanisms, while VICs prevent EMT of VECs suggesting two-
way communications (Figure 2B) (140).

In addition to the molecular role of VECs communicating
with underlying VICs, the endothelium is in direct contact with
the circulation and it is known that VECs lining the ventricular
and aortic cusp surface sense the complex, fluidic environment
(35, 36, 39, 141, 142). There is also strong data to suggest that
altered spatio-temporal flow patterns correlate with aortic valve
disease. More specifically, it has been suggested that the local
hemodynamic environment dictates the localization of calcified
nodules, being present exclusively on the aortic aspect (fibrosa)
of the aortic valve cusp (35, 143, 144). Furthermore, patients
with bicuspid aortic valve (BAV) exhibit different hemodynamic
profiles relative to that seen with tricuspid aortic valve (145, 146)
and have an increased propensity to develop CAVD as early
as 20–30 years of age (2, 147, 148). In addition to alterations
in the hemodynamics surrounding the adult valve, studies
have also demonstrated that altered intracardiac hemodynamics
during early avian development perturbs keymolecular pathways
involved in valve development and disease, including Tgfβ
signaling (100, 101, 106). While correlations between the valve
hemodynamics and disease have been made, little is known
about how mechanical stress on the endothelium translates
into differentiation of VICs toward an osteoblast-like lineage.
Previous studies have shown that the complex fluid mechanics
surrounding the aortic valve is initially sensed by VECs lining
the ventricular and aortic cusp surface (35, 36, 39, 141, 142).
Compared to static flow conditions, unidirectional shear stress

FIGURE 2 | Molecular communications between VEC and VIC populations.

(A) Schematic to show known signaling pathways active between VEC and

VIC populations that prevent CAVD. (B) Diagram to demonstrate known

cellular functions regulated by VEC-VIC communications; the mechanisms

underlying these functions are currently unknown, based on studies by

Hjortnaes et al. (140). Purple cells represent valve endothelial cells, blue cells

are valve interstitial cells.

(20 dynes/cm) (or increased flow) promotes expression of
inflammatory response genes and pro-calcification signaling,
both of which are known contributors of CAVD pathogenesis
(36, 39, 142). Interestingly, these pathogenic responses are greater
in cells isolated from the aortic surface of the valve cusp, the
side most susceptible to calcification (35, 36, 39, 142). With this
in mind, it is appreciated how “endothelial cell dysfunction”
has detrimental effects on relaying molecular cues to VICs and
promoting pathogenic changes.

EPIGENETIC REGULATION OF AORTIC
STENOSIS AND CALCIFIC AORTIC VALVE
DISEASE

Dysregulation of critical signaling pathways are detrimental
to valve cell function and structure-function relationships and
there is emerging work to show that the epigenetic landscape
can further influence gene regulation via multiple mechanisms
including DNA methylation and non-coding RNAs (149, 150).
Micro RNAs (MiRs) and long non-coding RNAs (LncRNAs)
lack protein-coding function. MiRs are 18–26 bases long and
predominantly inhibit expression of target genes either by
directly preventing protein translation through target 3′-UTR
binding or inducing mRNA degradation (151). In contrast,
LncRNAs are more than 200 nucleotides long and can localize
to different sub-cellular depots (152). While there are limited
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TABLE 1 | The Role of DNA methylation in CAVD/Aortic Stenosis.

Observation in CAVD/AS Effect Species References

Increased levels of DNMT3B in human stenotic aortic

valves

Increase in global DNA methylation. More than 6,000 differentially

methylated sites were identified between normal and stenotic valves.

Expression of the osteogenic marker Sp7 was increased four-fold in

stenotic vs. normal tissue

Human (156)

Genetic inactivation of DNMT3B Protects against activation of osteogenic pathways and slows the

progression of aortic stenosis

Mouse (157)

Altered CpG methylation in newborns with congenital

aortic stenosis

Differentially methylated CpG sites Human (158)

Altered methylation of CpG sites Contribution to regulation of left ventricular hypertrophy due to aortic

stenosis -induced pressure overload

Human (159)

Hypomethylation of LncRNA H19 Promotes VIC osteogenic-like changes by NOTCH1 silencing Human (160)

5-methylcytosine (5meC) in intron 1 in a mammalian

interspersed repeat element (MIR) was increased by

2.2-fold in CAVD compared to control aortic valves

Phospholipid phosphatase (PLPP3) gene and enzymatic activity were

downregulated in mineralized aortic valves

Human (161)

Decreased promoter methylation of the gene encoding

the proinflammatory enzyme 5-lipoxygenase (5-LO)

Increased 5-LO mRNA levels. (Aortic stenosis is associated with

increased leukotriene production, in part, due to induction of 5-LO in VICs)

Human (162)

studies on the epigenetic regulation of cardiogenesis and
valvulogenesis (153–155), gene methylation status, and LncRNAs
and MiRs profiles have shown to be altered in CAVD and aortic
stenosis and these are summarized in Tables 1, 2, respectively
(181–183).

CALCIFIC AORTIC VALVE DISEASE
THERAPEUTICS; PAST, PRESENT, AND
FUTURE

Decalcification of aortic cusps with moderate aortic stenosis
has been unsuccessful (184), and valve replacement surgery,
either with mechanical or biological prostheses, is currently
the treatment option of choice for CAVD patients. The ideal
prosthetic valve would have hemodynamics similar to the
native valve, grow and remodel with the individual, and not
require additional therapy such as anticoagulation. However,
to date we have yet to develop such an ideal prosthetic and
there is a high rate of failure due to progressive deterioration
including calcification and non-calcific damage that limits their
effectiveness (185). This is likely related to the incompatibility
of prosthetic valves with the native environment, leading to
increased infiltration of inflammatory cells and disturbances in
the hemodynamic environment (186, 187). Furthermore, the
implanted valve will be similarly exposed to the underpinning
risk factors of CAVD that were present before surgery. As a result,
aortic stenosis patients are at risk of secondary left ventricular
hypertrophy, and mortality rates of 2–3% have been reported
(188–192). Transcatheter aortic valve replacement (TAVR) was
pioneered in the early 2000s and is considered a less-invasive
option for aortic stenosis patients (193, 194). Therefore, this
procedure is common in patients deemed too “high risk” for
conventional valve replacement surgery, which is advantageous
for those suffering from senile-related CAVD. However, TAVR
is also costly and not risk-free (195). In order to advance the
field, tissue engineering approaches need to address the structural

degeneration and thromboembolism risks of current prosthetics,
and consider the need for growth and remodeling of implanted
valves in the pediatric population. In parallel, there is a need to
discover alternative therapeutics that go beyond surgery to halt
or reverse the pathogenesis of CAVD.

Attempts have been made to pharmacologically treat CAVD.
Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase
inhibitors, have been successfully used at reducing cardiovascular
events (196, 197) by virtue of several pleiotropic beneficial effects
including decreasing low-density lipoprotein (LDL) cholesterol,
improving endothelial cell function, reducing inflammation,
and decreasing thrombus formation (198). In vitro studies
have shown pharmacological statins to be successful in curbing
calcific nodule formation VICs (199), however, treatment with
Simvastatin led to increased VIC osteoblast markers (200). The
use of statins have been shown to successfully prevent CAVD in
preclinical studies (201–204), however, these drugs do not seem
to reduce CAVD or aortic stenosis in humans (205). Moreover,
metabolic syndrome patients on statin treatment exhibited
an increased rate of CAVD progression relative to placebo-
treated control subjects (206). A major challenge in the use of
statins for CAVD treatment is that the valve-specific molecular
targets remain unclear, and hyperlipidemia/inflammation are
not always causal of CAVD (207, 208). Furthermore, CAVD
is often clinically detected as aortic stenosis, an advanced
stage of the disease at which statins may not be useful in
regressing or modulating pathology (208). Therefore, the
utilization of statins in the treatment of CAVD remains
unsubstantiated.

It has been shown that stenotic aortic valves have increased
expression of the renin angiotensin (ag) system including ag-
converting enzyme (ACE) and the type I ag II receptor (209).
Animal studies have shown that ag-II receptor blocker (ARB)
treatment inhibited sclerotic changes in the aortic valve, inhibited
transdifferentiating of quiescent VICs to myofibroblasts and/or
osteo-VICs while maintaining endothelial integrity (210). While
ARBs are used to treat Marfan Syndrome (211), reports of
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TABLE 2 | Role of non-coding RNAs in CAVD/Aortic Stenosis.

Non-coding RNA Mechanism in CAVD/AS Target Species References

LncRNA MALAT1 Upregulated. Positive regulator of

osteodifferentiation by sponging miR-204

miR-204 Human (163)

miR-214 Upregulation, increased fibrosa thickness and

calcification were observed when porcine fibrosa

was exposed to oscillatory shear.

TGFβ1 Porcine (164)

LncRNA H19 Upregulated NOTCH1 Human (160)

miR-30c Upregulated ITGB1, CXCL12, FLT1,

CAMTA1, COL9A3

Human (165)

miR-486 Upregulated in TGFβ1 and BMP2-stimulated VICs

and VICs from calcified aortic valves

miR-204, Smurf2 Human (137)

miR-181b Upregulated TIMP3, SIRT1, GATA6 Human (166)

miR-125b Upregulated CCL4 Human (167)

miR-21-5p, miR-221-3p Upregulated TGFβ, MAPK, Wnt

signaling pathways

Human (168)

hsa-miR-193a-3p, hsa-miR-29b-1-5p,

hsa-miR-505-5p, hsa-miR-194-5p,

hsa-miR-99b-3p, and hsa-miR-200b-3p

Upregulated Unknown Human (169)

LncRNA TUG1 Highly expressed. Sponges miR-204-5p miR-204-5p Human (170)

miR-92a Overexpressed in calcified bicuspid aortic valves Unknown Human (171)

miR-204 Downregulated Smad4, Runx2 Human (137, 163, 172)

miR-141 Downregulated BMP2 Porcine (173)

miR-106a, miR-148a, miR-204, miR-211,

miR-31 and miR-424

Downregulated Runx2, BMPR2, BMP2,

BMP3, BMP8B, CBFB

Human (137, 163, 165)

miR-195 Downregulated Runx2, BMP2, Smad7,

Smad1, Smad3,

Smad5, Jag2

Human (174, 175)

miR-30b Downregulated Smad1, Smad3, Runx2,

caspase-3, Jag2,

Smad7, Notch1

Human (174, 176)

miR-26a Downregulated BMP2, ALP, Smad1,

Jag2, Smad7, Runx2,

Smad5

Human (174)

miR-122-5p Downregulated Lipid metabolism, TGFβ Human (168, 177)

miR-625-5p Downregulated Unknown Human (168)

miR-30e-5p Downregulated PI3K-Akt, MAPK

signaling pathway

Human (168)

hsa-miR-3663-3p, hsa-miR-513a-5p,

hsa-miR-146b-5p, hsa-miR-1972,

hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p,

hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p,

hsa-miR-636, hsa-miR-34a-3p,

hsa-miR-21-3p, and hsa-miR-516a-5p

Downregulated Unknown Human (169)

miR-10b Downregulated Inhibition of miR-10b in

HL-1 cardiomyocytes

caused over expression

of Apaf-1

Human (178)

miR-1, miR-133, miR-378 Downregulated Unknown Human (179)

miR-616 SNP in PON1 affects miRNA-mRNA interaction.

Patients with the CT or TT genotype at loci

rs3735590 were associated with a lower risk of

CAVD than the patients harboring the CC genotype

PON1 Human (180)

therapeutic effects of ARBs for CAVD are mixed. It has been
shown that ARBs could not prevent the progression of CAVD
in elderly, high-risk hypertensive patients (212), however, other
patients on ARBs had reduced aortic valve tissue remodeling

(213) and, furthermore, treatment with ACE inhibitors and ARBs
led to improved survival and a reduced risk of cardiovascular
events in aortic stenosis patients (214), and might also abrogate
CAVD pathogenesis in a hypertensive setting (215).
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As discussed, the lncRNA and miRNA signatures are altered
in the setting of CAVD, thus miRNA-based therapeutics maybe
beneficial in restoring their expression and normalizing levels
of downstream target genes that may play a role in CAVD
pathogenesis. Strategies to increase miR binding specificity
to target mRNAs include the utilization of locked nucleic
acids or 2′-O-methylation of the antisense oligonucleotides,
while circulation time and cellular uptake of miRNAs can be
enhanced by cholesterol conjugation (216). miR-204 expression
is significantly dysregulated in CAVD and aortic stenosis, as
are the miR-34 family members that are known to suppress
BMP2; making these attractive miR-based therapeutic targets
(137, 163, 165, 183, 217). In addition, LncRNA H19 promotes
osteogenic-like changes in VICs by silencing NOTCH1. Given
its success as a therapeutic strategy for pancreatic cancer
(218), LncRNA H19 may also serve as potential CAVD
therapy (160).

While a handful of genes have been identified largely in
mice, as playing a causative role in CAVD, manipulating gene
function therapeutically to attenuate calcific nodule progression
in humans is challenging, largely due to the off-target effects
in non-valvular structures. In susceptible mouse models,
pharmacologically targeting enzymes important in signaling
pathways increased in calcified valves has been successful in
promoting the regression or reducing the formation of nodules,
including Carbonic Anhydrase (219) and Cyclooxygenase 2
(116), respectively. As discussed here, the epigenetic regulation of
CAVD is evolving andmiRNA- or LncRNA-based therapeutics to
target key drivers of pathogenesis could potentially be beneficial
in restoring the expression of affected genes. In addition to genes,
risk factors for CAVD are also environmental, or influenced by
life style habits. Interestingly, while CAVD is observed in old,

hypercholesterolemic mice (220), studies to increase exercise and
reduce dietary cholesterol intake did not influence aortic valve
disease (221), although lowering plasma cholesterol genetically
did alleviate calcific nodule formation, but not stenosis (222).
Thus, once end-stage calcification and stenosis occur, eliminating
the cause/risk-factor for CAVD may not abrogate the disease,
supporting the notion that CAVD is irreversible and early
intervention is needed.

In summary, current therapies for the treatment of CAVD
are limiting and long-term ineffective. Moving forward there is
a critical need to increase our understanding of the etiology of
CAVD, and the molecular and cellular process that contribute
to onset and progression of calcific nodule formation. From this
we will be poised to advance the discovery of mechanistic-based
therapies that treat the underlying cause, rather than just the
symptoms.
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