93 research outputs found

    γ-ray assisted synthesis of Ni3Se2 nanoparticles stabilized by natural polymer

    Get PDF
    Nickel selenide nanoparticles were synthesized using γ-ray irradiation in the presence of natural polymer, chitosan as capping agent. Chitosan is the deacetylated product of chitin, the second most abundant organic resources after cellulose. The nanoparticles were produced using nickel acetate and selenium dioxide and the as-prepared chitosan stabilized nanoparticles were soluble and stable in aqueous solution. The morphology and structure of the nickel selenide nanoparticles were characterized using transmission electron microscope (TEM) and X-ray diffraction (XRD). Optical properties of the nanoparticles were characterized by UV–Visible spectrophotometer and photoluminescent spectroscopy. The XRD result shows that the nickel selenide conformed to Ni3Se2 with crystal structure of rhombohedral. The absorption spectrum of the Ni3Se2 nanoparticles covered from around 300–600 nm which makes it a potential photovoltaic and optoelectronic device material. In this report, γ-ray irradiation provided a “green”, simple and clean route for the synthesis of chitosan stabilized Ni3Se2 nanoparticles. The size and size distribution of the nickel selenide nanoparticles were influenced by the concentration of chitosan and absorbed dose of γ-ray irradiation

    γ-ray assisted synthesis of Ni3Se2 nanoparticles stabilized by natural polymer

    Get PDF
    Nickel selenide nanoparticles were synthesized using γ-ray irradiation in the presence of natural polymer, chitosan as capping agent. Chitosan is the deacetylated product of chitin, the second most abundant organic resources after cellulose. The nanoparticles were produced using nickel acetate and selenium dioxide and the as-prepared chitosan stabilized nanoparticles were soluble and stable in aqueous solution. The morphology and structure of the nickel selenide nanoparticles were characterized using transmission electron microscope (TEM) and X-ray diffraction (XRD). Optical properties of the nanoparticles were characterized by UV–Visible spectrophotometer and photoluminescent spectroscopy. The XRD result shows that the nickel selenide conformed to Ni3Se2 with crystal structure of rhombohedral. The absorption spectrum of the Ni3Se2 nanoparticles covered from around 300–600 nm which makes it a potential photovoltaic and optoelectronic device material. In this report, γ-ray irradiation provided a “green”, simple and clean route for the synthesis of chitosan stabilized Ni3Se2 nanoparticles. The size and size distribution of the nickel selenide nanoparticles were influenced by the concentration of chitosan and absorbed dose of γ-ray irradiation

    The clonal evolution of metastatic colorectal cancer

    Get PDF
    Tumor heterogeneity and evolution drive treatment resistance in metastatic colorectal cancer (mCRC). Patient-derived xenografts (PDXs) can model mCRC biology; however, their ability to accurately mimic human tumor heterogeneity is unclear. Current genomic studies in mCRC have limited scope and lack matched PDXs. Therefore, the landscape of tumor heterogeneity and its impact on the evolution of metastasis and PDXs remain undefined. We performed whole-genome, deep exome, and targeted validation sequencing of multiple primary regions, matched distant metastases, and PDXs from 11 patients with mCRC. We observed intricate clonal heterogeneity and evolution affecting metastasis dissemination and PDX clonal selection. Metastasis formation followed both monoclonal and polyclonal seeding models. In four cases, metastasis-seeding clones were not identified in any primary region, consistent with a metastasis-seeding-metastasis model. PDXs underrepresented the subclonal heterogeneity of parental tumors. These suggest that single sample tumor sequencing and current PDX models may be insufficient to guide precision medicine

    Molecular Profiling of Hepatocellular Carcinoma Using Circulating Cell-Free DNA.

    Get PDF
    PurposeMolecular profiling has been used to select patients for targeted therapy and determine prognosis. Noninvasive strategies are critical to hepatocellular carcinoma (HCC) given the challenge of obtaining liver tissue biopsies.Experimental designWe analyzed blood samples from 206 patients with HCC using comprehensive genomic testing (Guardant Health) of circulating tumor DNA (ctDNA).ResultsA total of 153/206 (74.3%) were men; median age, 62 years (range, 18-91 years). A total of 181/206 patients had ≥1 alteration. The total number of alterations was 680 (nonunique); median number of alterations/patient was three (range, 1-13); median mutant allele frequency (% cfDNA), 0.49% (range, 0.06%-55.03%). TP53 was the common altered gene [>120 alterations (non-unique)] followed by EGFR, MET, ARID1A, MYC, NF1, BRAF, and ERBB2 [20-38 alterations (nonunique)/gene]. Of the patients with alterations, 56.9% (103/181) had ≥1 actionable alterations, most commonly in MYC, EGFR, ERBB2, BRAF, CCNE1, MET, PIK3CA, ARID1A, CDK6, and KRAS. In these genes, amplifications occurred more frequently than mutations. Hepatitis B (HBV)-positive patients were more likely to have ERBB2 alterations, 35.7% (5/14) versus 8.8% HBV-negative (P = 0.04).ConclusionsThis study represents the first large-scale analysis of blood-derived ctDNA in HCC in United States. The genomic distinction based on HCC risk factors and the high percentage of potentially actionable genomic alterations suggests potential clinical utility for this technology

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Study Protocol for a Randomized Controlled Trial of Choral Singing Intervention to Prevent Cognitive Decline in At-Risk Older Adults Living in the Community

    Get PDF
    Introduction: This study is a parallel-arm randomized controlled trial evaluating choral singing’s efficacy and underlying mechanisms in preventing cognitive decline in at-risk older participants.Methods: Three-hundred and sixty community-dwelling, non-demented older participants are recruited for a 2-year intervention. Inclusion criteria are self-reported cognitive complaints, early cognitive impairment based on neuropsychological test scores or multiple risk factors of dementia. Participants are randomized to either weekly choral singing sessions or general health education. The primary outcome is cognitive performance, measured by a composite cognitive test score (CCTS). Secondary outcomes include depression, anxiety and neuropsychiatric symptoms; perceived stress; sleep quality and severity of dementia symptoms. Underlying mechanisms are examined using blood- and urine-based biomarkers and neuroimaging.Results: Screening began in July 2016. The first group of participants (n = 93) have been recruited. Intervention and control treatments are ongoing and will end in December 2019.Discussion: An evidence-based singing intervention for dementia prevention holds potential for healthcare savings and societal welfare.Trial Registration: NCT02919748, IRB Approval Number: NUS 2508
    corecore