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Abstract 

Commercial mortgage-backed securities (CMBS), as a portfolio-based financial product, 

have gained great popularity in financial markets. This paper extends Childs, Ott and 

Riddiough’s (1996, JFQA) model by proposing a copula-based methodology for pricing 

CMBS bonds. Default on underlying commercial mortgages within a pool is a crucial risk 

associated with CMBS transactions. Two important issues associated with such default—

extreme events and default dependencies among the mortgages—have been identified to 

play crucial roles in determining credit risk in the pooled commercial mortgage portfolios. 

This article pays particular attention to these two issues in pricing CMBS bonds. Our 

results show the usefulness and potential of copula-based models in pricing CMBS bonds, 

and the ability of such models to correctly price CMBS tranches of different seniorities. It 

is also important to sufficiently consider complex default dependence structure and the 

likelihood of extreme events occurring in pricing various CMBS bonds. 
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Extreme Events and the Copula Pricing of Commercial 

Mortgage-Backed Securities 

 

1. Introduction  

Commercial mortgage backed securities (CMBS) have become a major financing and 

investment instrument in the U.S. The U.S. CMBS market had grown to about $500 

billion outstanding bonds by 2005. CMBS are typical portfolio-based financial 

instruments, whose payoffs are contingent on the default realization of the pooled 

underlying commercial mortgages. As a result, default on the underlying mortgages is a 

critical risk exposure to CMBS investors and a major consideration in the pricing of 

CMBS in real estate literature. Two important issues associated with such default—

extreme events and default dependencies among pooled commercial mortgages—have 

been identified to play crucial roles in determining the pooled mortgage portfolios’ credit 

risk exposure, especially for the CMBS transactions backed by a large number of 

mortgage loans.
 1

 In this paper, our contribution is to examine the pricing of CMBS bonds 

with particular focus on these two issues. Specifically, we introduce and employ a 

copula-based model framework, which will be shown to be a powerful method of 

analyzing simultaneous defaults of underlying mortgages and the joint default 

dependencies among them.  

 

Previous studies on CMBS pricing in the real estate literature usually utilized a 

contingent-claims approach to the valuation of CMBS bonds.
2
 In this approach, the log-

normal distribution of underlying asset value or equivalently normal distribution of its 

continuously compounded returns is a crucial assumption, as in the seminal papers of 

                                                 
1
 Childs, Ott and Riddiough (1996) examine the effect of default dependencies among pooled commercial 

mortgages on the pricing of multiclass CMBS bonds by considering the correlation structure among 

underlying commercial properties in the pool. Their numerical results demonstrate that the correlation 

structure is an important determinant of required yield spreads for multiclass CMBS bonds. Fan, Sing, and 

Ong (2008) allow for a default contagion function in examining the impact of default clustering of pooled 

commercial mortgages on CMBS prices. Their findings support the critical role of default dependence 

structure among pooled commercial mortgages in the pricing of CMBS bonds. On the other hand, the effect 

of extreme events on the credit quality of CMBS bonds has also attracted considerable attention as a result 

of Hurricane Katrina in 2005 (Bach, et al., 2006). 
2
 An exception is Fan, Sing, and Ong (2008), who use an intensity-based model to price CMBS bonds.  
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Black and Scholes’s option pricing theory (1973) and Markowitz’s portfolio optimization 

theory (1952). Under the assumption of geometric Brownian property value processes, 

the default on commercial mortgages is determined based on the stochastic evolution of 

the property value relative to the default threshold level [see Titman and Torous (1989) 

and Childs, Ott and Riddiough (1996)]. However, empirical results have challenged the 

assumption of lognormal diffusion property price processes. Based on the method of 

McCulloch (1986) and employing the U.S. Russell-NCREIF data base, Young and Graff 

(1995) demonstrated that the annual returns of individual properties are not normally 

distributed during the period from 1978 to 1992. In particular, they found that the sample 

data exhibited a ―heavy-tailed‖ distribution [See also similar evidence in Graff, 

Harrington and Young (1997, 1999) and Young (2007)]. These results have important 

implications for the specification of CMBS pricing models.  

 

First, the lognormal distribution of underlying commercial property value, though 

analytically convenient, may be misspecified, since the returns of real estate, in effect, 

deviate from normality. The assumption that real estate returns are normally distributed 

actually neglects the probable effect of their higher moments such as kurtosis on default 

dependency of pooled commercial mortgages, while the empirical results above implies 

the importance of examining these effects. 

 

Secondly, specification of the linear correlation between any two underlying commercial 

properties is insufficient to capture default dependence structure of the pooled mortgages, 

whose adequate modeling has been identified as one of the most important and pressing 

issues in the pricing of credit risk in CMBS bonds [see Fan, Sing, and Ong (2008)]. 

Childs, Ott and Riddiough (1996, henceforth COR) provides a good attempt to look at the 

default dependence structure among pooled commercial mortgages by considering the 

linear correlation coefficients of the underlying commercial properties. However, recent 

studies such as Embrechts, McNeil and Straumann (1999, 2002) have demonstrated that 

the linear correlation coefficient is not an adequate measure of the dependency between 

any two assets and can only capture their linear dependence, and a sufficient 
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consideration of the full joint multivariate distribution of asset values is indispensable in 

modeling default dependency of pooled loans.  

 

Thirdly, Hurricane Katrina in 2005 has drawn considerable attention to the effect of 

extreme events on the credit quality of CMBS bonds, and several independent credit 

rating agencies like Moody’s and Fitch Ratings have discussed the likely effect of the 

particular event on CMBS transactions [see Bach, et al. (2006)]. Using the standard 

contingent claim approach, however, can lead to an underestimation of the effects of 

extreme events on CMBS credit quality, because the multivariate normal distribution 

does not exhibit tail dependence. Tail dependence in more recent research has become 

known as a powerful measure of the dependency between the occurrences of extreme 

observations of underlying random variables [see, e.g., Malevergne and Sornette (2006, 

Chapter 4)]. Given that extreme events are likely to result in significant illiquidity in real 

estate markets and even a sharp decline in real estate values, it is important to allow for 

the likelihood of extreme events occurring via property value tail dependence in 

modeling the default dependence structure of pooled commercial mortgages.  

  

In order to overcome the above difficulties in pricing CMBS bonds, we introduce a novel 

copula-based framework to the CMBS pricing issue. Copulas are becoming popular as a 

promising tool in the research and practice of credit risk valuation associated with multi-

dimensional distributions of asset portfolios, because they can provide a complete 

description of the dependence structure among the pooled assets rather than use the 

simple normalized covariation. The copula-based methodology has been utilized recently 

for pricing Collateral Debts Obligations (CDOs).
3
  

 

Copula functions are a category of appealing mathematical tools to describe the complex 

dependence structure among multiple random variables, which can therefore be used to 

model default dependency among the underlying loans in a portfolio and its credit risk in 

extreme events (Li, 2000). CMBS are an important class of portfolio financial 

                                                 
3
 For a good review on copula models for pricing CDOs, see Elizalde (2005).  
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instruments with pooled commercial mortgages as collateral. This article will show the 

usefulness and potential of copula models in pricing CMBS bonds, in particular allowing 

for complex default dependence structure among pooled commercial mortgages and the 

credit risk of CMBS bonds in extreme events. Two recent developments in copula models 

are the incorporation of the conception of both factor models and conditional 

independence into the pricing of credit risk in portfolio-based financial instruments [see  

Saunders, et al. (2007)]. Under the conception of factor models, we assume that the value 

of a commercial property is driven by a set of fundamental random variables common to 

all other commercial properties in addition to a property-specific factor. CMBS 

transactions are often backed by a mortgage pool with a large number of loans, each of 

whose values is likely to be very small relative to the whole pool. The specification of a 

factor model can reduce significantly the dimensional problem in the analysis of default 

risk associated with the large portfolio, and therefore make the pricing of CMBS bonds 

backed by a large mortgage pool tractable mathematically. On the other hand, given the 

fact that default dependency of pooled mortgage loans are to a large extent driven by 

some common fundamental factors, the concept of conditional independence, in effect, 

implies that since the default times of pooled mortgage loans are usually determined by 

these factors, conditional on the factors these default times can be treated to be 

independent. Such specification further allows the modeling of the joint default of pooled 

commercial mortgages to be tractable in utilizing a semi-analytical approach or Monte 

Carlo simulation.  

 

Extending the contingent-claims model of Childs, Ott and Riddiough (1996), this article 

explores the CMBS pricing issue using the copula-based methodology. Our numerical 

results show that the default dependence structure among pooled commercial mortgages 

significantly affects required yield spreads for various CMBS bonds. Given that the real 

default dependence structure of pooled commercial mortgages is usually unknown, it is 

therefore important to allow for copula-based pricing models, which can provide a 

complete description of the dependence structure. Moreover, the effect of possible 

extreme events on CMBS yield spreads is also noticeable and implies the importance of 

considering property value tail dependence in modeling the joint default of multiple 
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commercial mortgages. The remainder of this paper is organized as follows. Section 2 

introduces the basic model framework for pricing CMBS bonds. Section 3 briefly 

presents several important copula functions. Section 4 extends the copula-based model to 

price multiclass CMBS bonds. Section 5 applies a semi-analytic approach to pricing 

CMBS bonds. Section 6 draws relevant conclusions. 

 

2. Default Models 

Since the seminal work of Merton (1974), there has been  a large body of literature  that 

prices credit risk associated with defaultable bonds based on the classical option pricing 

theory developed by Black and Scholes (1973). Such category of credit risk models are 

usually known as contingent-claims or structural-based models, where a firm’s default is 

determined by the stochastic evolution of its asset value relative to a pre-specified default 

threshold.
 4

 Childs, Ott and Riddiough (1996) provided an excellent framework for 

evaluating credit risk associated with CMBS bonds using the contingent-claims approach. 

Their model takes account of an underlying mortgage pool consisting of N≥1 commercial 

mortgages, each of which is guaranteed by a commercial property. The value of any 

commercial property i is assumed to evolve following a log-normal diffusion process  

i i i i i idV V dt V dZ            （1） 

where i  is the  expected return on property i, i  is the volatility of property i returns, 

and iZ is a Wiener process. To further highlight the key feature of the COR model, we 

neglect the stochastic evolution of interest rates and solve this stochastic differential 

equation (SDE) under the risk neutral probability measure as  

    21
0 exp

2
i i i iV t V r t W t 

  
    

  
      （2） 

where r is the constant risk-free interest rate, W is a normally distributed random variable 

with zero mean and unit standard deviation, and  iV t and  0iV  are the values of 

property i  at times t and 0, respectively. 

 

                                                 
4
 See Sing, Ong, Fan and Lim (2005) for a good survey on structural-based pricing models of credit risks. 
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Let *

iV  be the default threshold value,
5
 and suppose that default on commercial mortgage 

i occurs when its underlying property value falls below this threshold level. This default 

condition can be expressed as 

  2 *1
0 exp .

2
i i i iV r t W t V 

  
    

  
      （3） 

As a result, the default probability of mortgage i at time t is  

 

  

  

2 *

* 2

* 2

1
Pr 0 exp

2

1
ln 0

2
Pr

1
ln 0

2
,

i i i i

i i i

i

i i i

i

V r t W t V

V V r t

W
t

V V r t

G
t

 









   
     

   

  
   
    

 
  

  
   
   

 
 
 

        (4) 

where  G  is the cumulative normal distribution function. Expression (4) provides a 

foundation implied in the COR model for determining the default probability of 

individual commercial mortgages.  

 

Extending the contingent-claims model by incorporating the conception of factor models, 

we specify that the value of underlying commercial property i evolves according to a one-

factor model 

  1i iV t M    ,        (5) 

 

                                                 
5
 In structural-based models, default occurs if the firm’s asset value drops below a default threshold, which 

can be determined both exogenously and endogenously. These models were first introduced by Black and 

Cox (1976), in which the default threshold is exogenously specified. Similarly, Longstaff and Schwartz 

(1995) incorporate an exogenously determined default threshold into their structural-based model for 

pricing risky debt. Following their wisdom, copula-based models usually assume that the default threshold 

values are given exogenously, because a more general specification for the default threshold does not 

provide additional insight into the pricing of portfolio-based bonds in our model. This is slightly different 

from Childs, Ott and Riddiough (1996), where default boundary values can be determined endogenously 

and found using the traditional backward pricing equation approach. 
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where   is a nonnegative constant with 1 1   , M is a random variable representing 

a common market factor, and for 1,...,i N , i represent the idiosyncratic factors that are 

independent and identically distributed (i.i.d.) and independent of M, and both M and i  

have a zero mean and unit variance[see Vasicek (1991), Schönbucher (2000) and 

Saunders, et al. (2007)]. Such a specification implies that any two underlying commercial 

properties are correlated with a correlation coefficient  .
6
 
7
 

 

Let ,   and 
i iV MF F F represent the cumulative distribution functions of the random 

variables ,   and i iV M , respectively. Suppose that default on commercial mortgage i 

occurs if   *

i iV t V , where *

iV  still represents the default threshold level for mortgage i. 

Thus, given the cumulative distribution function
iVF of commercial property i and its 

mortgage default probability  ip t  over the time period (0, t), we may obtain 

 * 1 ( )
ii V iV F p t          (6)  

where 1

iVF  is the inverse of distribution function 
iVF . Conditional on the realization of the 

common market factor M m , substituting (5) into the default condition of mortgage i 

gives 

 *

1

i

i

V m








.         (7) 

Accordingly,  the conditional default probability of this mortgage can be expressed as 

 
*

Pr
1i

i
i

V m
t M m F






 
      

,       (8) 

where i  is the time until default for mortgage i .  Substituting (6) into (8) produces 

                                                 
6
 Alternatively, we can specify the one-factor model as   21i i i iV t M     , where

i  represents the 

sensitivity of Vi to M. This specification implies that the correlation between any two underlying assets Vi 

and Vj is 
i j   instead of   in our model specified above [see, e.g., Guegan and Houdain (2007)]. 

7
 This study uses property correlation coefficients as dependence parameters to examine the effect of 

default dependencies among pooled commercial mortgages on the probability of their joint default in a 

large portfolio. 



  

 

 

8 

 
  1

Pr
1

i

i

V i

i

F p t m
t M m F






 
   
  

.     (9) 

 

More generally, equation (5) can be extended as a multi-factor model: 

  1 1 2 2 1 21i K K K iV t M M M                (10)  

where kM , 1,...,k K , represent K independent common factors, i  is the idiosyncratic 

factor of commercial mortgage i , k  are the corresponding nonnegative constants, and  

kM and i  are independent of each other.
8
  It can be shown that the correlation between 

any two commercial properties i and j are 

 
1 2

1,  for
Corr ,

,  for .
i j

K

i j
V V

i j  


 

   
 

Given the realizations of 1 1 2 2, , , K KM m M m M m    , the conditional default 

probability of underlying mortgage i can be written as 
9
                

 
*

1 1 2 2

1 2 21

1 2

Pr , , ,
1i

i K K

i K K Z

K

V m m m
t M m M m M m F

  


  

   
       

    

. 

 

3. Copulas 

Copulas are functions that reveal the relationship of the marginal (individual) distribution 

functions of individual random variables with their multivariate distribution function. 

Gaussian and Student-t copulas are two of the most widely used copula models in the 

                                                 
8
 Although all the relevant results below are developed using equation (5), similar results can be easily 

found using the more general equation (10). We keep to the parsimonious case to highlight the 

contributions in this paper without causing unnecessary complications that throw no additional insights. 
9

Alternatively, the multi-factor model can be specified as   1 1 2 2 ...i i i iK K i iV t M M M         or 

  2 2 2

1 1 2 2 1 2... 1 ...i i i iK K i i iK iV t M M M               , where 
ik  represents the sensitivity of Vi to the kth 

factor M and 
i represents the sensitivity of Vi to 

i . This implies that the correlation between any two 

underlying properties Vi and Vj is 
1 1 2 2( , ) ...i j i j i j iK jKCorr V V           instead of 

1 2 ... K     in our model 

specified above [see, e.g., Hull and White (2004) and Guegan and Houdain (2007)]. 
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relevant literature [see Hull (2004, 2005) and Burtschell, Gregory and Laurent (2005)].
10

 

The correlation coefficients in Gaussian and Student-t copulas have apparent economic 

implication, and can be interpreted as dependence on common market or sectoral factors. 

Among them, the Student-t copula has attracted more recent attention in modeling the 

dependent structure implicit in multivariate financial data. In particular, Coleman and 

Mansour (2005) showed that the distribution characteristics of real estate data, such as 

significant heavy tail, can be better captured using the Student-t distribution.
11

 

 

3.1 Elliptical Models 

In a Gaussian model, the value of any underlying commercial property is assumed to 

follow a normal distribution. Suppose that both M and i are independent Gaussian 

random variables. Consequently, conditional on the realization of the common factor M, 

the default probability of mortgage i can be obtained from equation (9)    

 
  1

Pr
1

i

i

G p t m
t M m G






 
   
  

,     (11) 

 

where  G  is the cumulative normal distribution function. 

  

In contrast, we can also assume that the value of any underlying commercial property 

evolves in a Student-t distribution. The Student-t distribution is the quotient of a normal 

random variable and the square root of a Chi-Square random variable scaled by its degree 

of freedom. Let 1i iX M    , where both M and i are independent Gaussian 

random variables. Consequently, we have the following Student-t distribution with v 

degrees of freedom 

/

i
i

X
V

z v
 ～ vT ,         (12) 

                                                 
10

  See Appendix 1 for a brief review on the theory of copula function. For a comprehensive review on this 

theory, see Nelsen, R. (1999) and Cherubini, Luciano and Vecchiato (2004). 
11

 Coleman and Mansour (2005) also apply the noncentral Student-t distribution for considering significant 

skewness. The standard Student-t is a symmetric distribution with heavy tails, but it can be generalized as 

the noncentral Student-t distribution for measuring asymmetric behavior by introducing a noncentrality 

parameter of controlling the degree of skewness. 
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where iX  is a normally distributed random variable with zero mean  and unit variance, 

and z is a Chi-square random variable with v degrees of freedom. This is a symmetric 

Student-t distribution, which has a bell shape curve similar to that of the normal 

distribution, but with a heavier tail. Since the idiosyncratic factors satisfy the normal 

distribution, the conditional default probability can be expressed as  

 
  1

Pr
1

v i

i

T p t z v m
t M m G






 
   
  

,     (13) 

where ( )vT  is the cumulative Student-t distribution function. 
12

  

 

3.2 Copula Functions 

To examine the default dependency of pooled commercial mortgages, consider a CMBS 

backed by N equally weighted underlying mortgages, and let the random variables i , 

1...i N , represent their default times. For simplicity of analysis, suppose that 

conditional on the common market factor, the default probabilities of the individual 

underlying mortgages are independent of one another. We also make the assumption that 

recovery rate is constant. This may be further relaxed, but does not provide additional 

insights into the models. The default probability for the ith underlying mortgage is then 

defined as:  

      0
Pr 1 exp

it

i i i i ip t t h u du     ,       

where 0 denotes the issue date of the CMBS bonds, it represents the maturity date of 

underlying mortgage i  and  ih u is the hazard rate of default at any time u [see, e.g., 

Li(2000) and Fan, Sing, and Ong (2008)] .  

 

The joint distribution of the default times can be expressed in the following form even if 

the mortgages are not equally weighted  

                                                 
12

 Alternatively, Hull and White (2004) also suggest a double Student-t copula, while this model is not 

stable under convolution and does not provide additional insight into the pricing of CMBS bonds [see also 

Burtschell, et al. (2005)]. 
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         1 1 1

1 1 2 2 1 1 2 2Pr( , ,..., ) , , ,N N N N Nt t t p t p t p t           , (14) 

where N  is a N-dimensional cumulative distribution function (cdf) with correlation 

matrix  , and 1  is the inverse of the marginal distribution function [see, e.g., Li (2000)]. 

For an N-dimensional Gaussian or Student t copula function, there is an explicit 

expression for its probability density function (pdf). By differentiating, the copula 

function will uniquely determine the N-dimension pdf as shown in Appendix A1.  

 

A Gaussian copula is the copula of a multivariate normal distribution. Based on Sklar’s 

theorem, the Gaussian copula can produce the joint normal distribution function. 

According to the definition of the Gaussian copula, we can easily obtain its density 

function from equation (A4) 

   1

1 1

2

1 1
,..., exp

2

T

Nc t t I  
    

 

      (15) 

where     1 1

1 ,..., NG t G t   
 , and I denotes the identity matrix. Both upper and lower 

tail dependence are absent in the Gaussian copula, therefore implying no likelihood of 

extreme default observations jointly occurring in this copula. 

 

A Student-t copula can be viewed as an extension of the Gaussian copula. For a 

multivariate Student-t copula with degree of freedom v, its default copula density can be 

written as
 13

 

2
1

1

2
1 1

2 2

1

1
1

2 2
( ,..., )

1

2 2 1

v N
N

N v

N j

j

v N v

v
c t t

v v

v

 















      
         

       
    

       
        

 


,   (16) 

where  1

j v jT t   is the inverse of the univariate cdf of Student-t with v degrees of 

freedom,  x is a Gamma function, and     1 1

1 ,...,v v NT t T t   
 .  Upper and lower tail 

dependence in the Student-t copula can be expressed as 

                                                 
13

 See Andersen, Sidenius and Basu (2003). 
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1

1
2 1

1
U L vT v


 




 
      

 ,       (17) 

where    is the correlation coefficient, and 1vT   represents a  Student-t distribution with 

v+1 degrees of freedom [see Meneguzzo and Vecchiato (2004) and Demarta and McNeil 

(2005)]. The factor conditional independent model can reduce the dimension of 

correlation matrix in the Student-t copula, and therefore facilities the simplification of 

default dependence computation associated with CMBS pricing. 

 

4. CMBS Pricing 

In this section we discuss the pricing of the pooled commercial mortgages and their 

multi-class CMBS bonds using the copula models defined above. We first specify the 

remaining value of each mortgage as  

 
1 1

i
i t

i

L
R

N

 


 ,          (18) 

where iL is the deterministic loss rate of the ith pooled mortgage, and 
 

1
i t 

 is the 

indicator function of mortgage i default. We express the cumulative default loss of the 

underlying mortgage portfolio at time t in the percentage form 

 
 

1

1
i

N
i t

i

L
L t

N

 



 .         (19)  

Then we can obtain the cumulative remaining value in percentage form 

 
 

1

1 1
i

N
i t

i

L
R t

N

 




 .         (20) 

 

In a CMBS transaction, due to the use of the credit enhancement of senior/subordinated 

structure, two or more classes or tranches of debt securities are usually issued. The 

CMBS tranches are redeemed sequentially from senior tranche to the first loss tranche, 

and default risk is therefore shifted from the senior tranche to more subordinated tranches. 

Suppose that the CMBS is structured with three tranches, namely senior (S), mezzanine 

(M) and junior/first loss piece (J) tranches,  , , .S M J  We also assume that there 
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exist two default thresholds— and  , which satisfy 0 1.     Let  MR t represent 

the cumulative remaining value on the mezzanine tranche. We specify that 

 
 

   
 

if

if

0 if .

L t

MR t L t L t

L t

  

  



  


   
 

 

That is, 

                , 0,
1 1

L t L t
MR t L t

  
  

 
    .     (21) 

Similarly, for the cumulative remaining value on the junior tranche  JR t , we have 

         0,
1

L t
JR t L t





  ,        (22) 

while for the senior tranche’s remaining value  SR t , we define 

                ,1 0,
1 1 1 1

L t L t
SR t L t

 


 
    .     (23) 

 

Let         , ,K t SR t MR t JR t , and  0,B t denotes the discount factor for maturity t. 

Then under the risk-neutral probability measure, the cumulative remaining value of a 

given tranche can be expressed as 

   Q

0
E 0,

t

B s dK s 
    .        (24) 

Since  K t is a pure jump process, (24) can therefore be defined under the Riemann-

Stieltjes integration. Given that       0, 0, 0,d B s ds f s B s  , where  0,f s is the 

instantaneous forward rate, then (24) can be integrated by parts formula 
14

 

               
0 0

0, 0, 0, 0,
t t

Q Q QB s dK s B t K t K s f s B s ds     
    .  (25) 

For simplicity of analysis, suppose that the interest rate and instantaneous forward rate 

are constant, and that the hazard rate is flat. Expression (24) can therefore be rewritten as 

             
0 0

0, exp exp
t t

Q Q QB s dK s rt K t r rs K s ds       
    .  (26) 

                                                 
14

 See Meneguzzo and Vecchiato (2004) for a similar derivation, while they only consider the cumulative 

default loss.  
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This implies that we only need allow for the first moment of the cumulative remaining 

value on this tranche in the numerical analysis. 

 

On the other hand, the present value of a given tranche may be computed as follows: 

       
1

0 exp exp
t

j

j

V y r j C y r t F


      ,     (27) 

where j represents a coupon payment date, y is the required yield spread, r is the risk-free 

interest rate, 
jC represents the coupon payment of the CMBS tranche at time  j, and F is 

its face value. Then we find that the yield spread y can be calculated by setting (26) and 

(27) to be equal. 

 

4.2 Semi-analytic Approximation 

The true loss distribution (equivalently, remaining value distribution) of an underlying 

commercial mortgage pool can be approximated using that of a homogeneous reference 

portfolio if this pool consists of a large number of mortgage loans that are not too 

inhomogeneous in credit quality. As a consequence, we can obtain a semi-analytical 

solution for pricing CMBS bonds. In this approximation, defaults on commercial 

mortgages are treated to be independent of one another, as they are conditional on the 

realization of the common factor(s). Given the common factor(s), the remaining value for 

mortgage i in the underlying portfolio is written as 

 
 

 

1 ,  with probability 

1, with probability 1 .

i i

i

i

L p t m
R t

p t m

 
 



      (28) 

 

Suppose that the underlying mortgage pool is homogeneous, and omit the mortgage 

subscripts for iL L . Since the conditional defaults are independent, the conditional 

probability of having n ≤ N mortgage defaults may be written as 

       Pr 1 1
n N nNnL

R t m p t m p t m
nN

  
     

   
.    (29) 

Correspondingly, the unconditional probability of n mortgage defaults is given by 
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         Pr 1 1
n N n

M

NnL
R t p t m p t m dF m

nN






  
     

   
    (30) 

where  MF m is the cdf for the common factor M.  

 

As shown in (25), there are two parts associated with the expectation computation of 

CMBS bonds. Since  

        
0

Pr 1
N

Q

M

n

nL
K t R t m K t dF m

N





  
     

  
 ,                                         (31) 

substituting equation (31) into equation (25), we have   

            
0

0, 0, Pr 1
N

Q

M

n

nL
B t K t B t R t m K t dF m

N





  
     

  
 ,             (32) 

and 

      

         

         

0

00

0
0

0, 0,

Pr 1 0, 0,

Pr 1 0, 0, .

t
Q

t N

M

n

Nt

M

n

K s f s B s ds

nL
R s m K s dF m f s B s ds

N

nL
R s m K s f s B s ds dF m

N












  
    

  

  
    

  



 

 

                  (33) 

This exchange of integration in equation (33) is for convenience of computation. That is, 

we calculate conditional expectation of  K s first, and then compute the unconditional 

expectation about  MF m . More specifically, based on equations (21) and (31) the 

expected time-t value of the mezzanine tranche   Q MR t can be expressed as 

        

          

0

1 0

Pr 1

Pr 1 Pr 1 .

N
Q

M

n

B A

M

n A n

nL
MR t R t m MR t dF m

N

nL nL
L t R t R t dF m

N N
  







  

  
     

  

    
           

    



 

       (34) 

where A N L    , B N L    , and  X is the maximum integer less or equal to X. 

Similarly, we can derive the expected expressions for the senior and junior tranches based 

on equations (22), (23) and (31). Based on the resulting formulas above, the cumulative 
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remaining value on a given tranche can therefore be computed using the numerical 

integration.  

 

5. Numerical Results for Pricing CMBS  

In order to illustrate the usefulness of the copula-based model in pricing CMBS bonds, 

we employ the semi-analytic approach for pricing the CMBS based on the results derived 

in the previous section.
15

 We price a hypothetical CMBS transaction backed by 100 

commercial mortgages of the same type and size. Three different tranches, namely senior, 

mezzanine and junior bonds, are issued for financing the purchase of the commercial 

mortgages. The security structure of the CMBS transaction is 70:20:10.
16

 Suppose that 

those underlying mortgages are fixed-rate balloon loans with an average loan-to-value 

(LTV) ratio of 75%. For simplicity, their notional value is standardized as 1/100, while 

their remaining maturity terms are seven years coinciding with the scheduled redemption 

time of the CMBS tranches. We shall ignore the prepayment or early redemption of the 

underlying mortgages due to the usual imposition of lockout and prepayment penalties on 

them.
17 

 

We investigate the sensitivity of required yield spreads on CMBS bonds to the varying 

correlation coefficient of the underlying commercial properties from 0 to 1. Table 1 

reports the input parameter values in the basic case scenario. Figure 1 shows that for the 

Gaussian copula, required yield spreads for the senior tranche are an increasing function 

in the correlation between underlying commercial properties. More specifically, our 

results show that the yield spreads decrease from about 17 to 0 basis points, when the 

correlation coefficient changes from 1 to 0. This implies that better diversification due to

0   helps further reduce the default risk of the senior tranche with a 70-percent pool 

share in that the overwhelming majority of the default risk in the underlying pool is 

shifted to the more subordinated tranches occupying 30 percent of the pool through the 

                                                 
15

  See Bluhm and Overbeck (2004) for more technical details about this approach. Alternatively, we can 

use Monte Carlo simulation for the pricing purpose. 
16

 In a CMBS transaction, senior tranches typically occupy not less than 70 percent of the issued bond size 

[see, e.g., Childs, Ott and Riddiough (1996)]. 
17

 In this numerical analysis, we determine the default threshold level according to equation (6). 
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senior/subordinated security structure. For the Student-t copula, a similar function 

relationship of required yield spreads with property correlation can also be identified 

from Figure 1. The yield spreads are found to be positively associated with the 

correlation but have slightly greater values than those produced by the Gaussian copula. 

This is because the Student-t copula allows for tail dependence, that is, the likelihood of 

joint occurrence of extreme observations, while the Gaussian copula does not exhibit any 

such dependence. 

 

[Insert Table 1] 

 

[Insert Figure 1] 

 

 

Figure 2 displays the impact of varying property correlation on required yield spreads for 

the mezzanine tranche. Similarly to the case of the senior bond, the yield spreads are 

found to be positively related to property correlation for both the copulas but are more 

sensitive to its changes. For the Gaussian copula, the yield spread increases from 0 to 177 

basis points as the correlation coefficient increases from 0 to 1. This is because that both 

the mezzanine and junior tranches bear the majority of the default risk of the pool. Also, 

we find that since the junior tranche with a 10-percent pool share absorbs most of the 

default risk, a well-diversified pool may make the mezzanine tranche immune from 

default loss risk, while decreased pool diversification causes this tranche to bear a higher 

default risk exposure. In the case of the Student-t copula, the yield spread increases from 

50 to 174 basis points when the correlation coefficient changes in the range from 0 to 1. 

Compared with those results produced by the Gaussian copula, the higher yield spreads 

are due to the impact of tail dependence of underlying property values. This implies that 

property value tail dependence plays an important role in determining the default risk 

exposure to this tranche. Moreover, like the senior tranche, Figure 2 also shows that the 

larger the correlation coefficient becomes, the closer the yields spreads on the mezzanine 

tranche in these two cases are to each other.  When the correlation coefficient is very 



  

 

 

18 

close to 1, this implies that the pooled commercial properties can be actually viewed as a 

single, large commercial property so that in these two cases the default risk exposure to 

this tranche is not affected by property value tail dependence.                                             

 

 [Insert Figure 2] 

 

Figure 3 plots the relationship between junior tranche yield spreads and property 

correlation. It is noteworthy that varying property correlation produces an opposing 

impact on the yield spreads compared with those on yield spreads for the senior and 

mezzanine tranches, and the yield spreads on this tranche are fairly high when the 

correlation coefficient is close to zero. For the Gaussian copula, it is shown that the yield 

spreads decrease from 803 to 177 basis points as the correlation coefficient increases 

from 0 to 1. The inverse impact of increasing property correlation on junior tranche yield 

spreads is consistent with the finding in Childs, Ott and Riddiough (1996). For the 

mezzanine and senior tranches, increasing correlation amongst the commercial properties 

produces higher probabilities of large mortgage default losses and therefore results in the 

increase in their default risk exposure. In such scenarios, these two tranches have to 

absorb some of these default losses. Thus higher spreads are required as compensation for 

these two tranches as the correlation becomes larger. However, higher property 

correlation also leads to a higher survival correlation among the underlying commercial 

mortgages and therefore these mortgages also tend to survive together.  As a result, the 

junior tranche will require less default risk premium due to higher survival correlation. 

 

On the other hand, for the Student-t copula, our numerical results also show that required 

yield spreads for the junior tranche decrease with the increase in the property correlation. 

Figure 3 shows that if the correlation coefficient changes from 0 to 1, the yield spreads on 

this tranche decrease from about 627 to 175 basis points. In particular, one can readily 

find that there are lower yield spreads for the junior tranche under the Student-t copula 

than under the Gaussian copula. This is due to the impact of property value tail 

dependence on the allocation of the pool’s default risk among these three tranches. The 

Student-t copula produces higher joint default or survival probabilities at the tail. Given 
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that the expected default loss of the pool remains unchanged in these two cases, if the 

more default risk of the pool is shifted to the mezzanine tranche for the case of the 

Student-t copula, then the less default risk loss will be correspondingly borne by the 

junior tranche in this case. 

 

[Insert Figure 3] 

 

It is noteworthy that our numerical results are comparable with those with the same 

security structure in Childs, Ott and Riddiough (1996). Their study has demonstrated that 

mortgage pool diversification plays an important role in determining required yield 

spreads for various CMBS tranches. An important result contradicting the conventional 

wisdom in the COR model is the opposing impacts of pool diversification on the yield 

spreads for the mezzanine and junior tranches.
18

  Table 2 further confirms these results. 

However, this table also shows that mezzanine tranche yield spreads derived from the 

Student-t copula are higher than those produced in the COR model due to the impact of 

property value tail dependence. Senior tranche yield spreads in our model are found to be 

a decreasing function of pool diversification like yield spreads on the mezzanine tranche, 

while the COR model shows a slightly different relationship. In addition, our results also 

show that junior tranche yield spreads derived from both the copulas are smaller than 

those given in the COR model. This is mainly because the COR model also take into 

account the impact of interest rate risk on commercial mortgage value by specifying the 

stochastic evolution of interest rates, while for the purpose of this study we focus on the 

critical role of various property value dependency in pricing CMBS bonds. In particular, 

for the Student-t copula, the lower yield spreads for the junior tranche is also due partly 

to the impact of property value tail dependence on the allocation of the pool’s default risk 

among these three tranches as discussed above. 

 

[Insert Table 2] 

 

                                                 
18

 Childs, Ott and Riddiough (1996) further show that better pool diversification increases the value of 

mezzanine CMBS tranches, but decreases the value of junior CMBS tranches. 
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6. Conclusions 

This paper develops a copula-based model to price CMBS bonds. Given that commercial 

real estate returns usually deviate from normal distribution and the dependency among 

underlying properties cannot be sufficiently captured by the linear correlation coefficient, 

extant pricing models of CMBS that neglect these important features do not offer 

accurate valuation. The two important issues associated with CMBS bond default—

extreme events and default dependence structure among pooled commercial mortgages—

play crucial roles in determining the pooled commercial mortgage portfolio’s credit risk 

exposure to CMBS investors. To address these problems, we employ the copula-based 

method.  

 

We have demonstrated that the proposed copula-based model has great flexibility in 

sufficiently taking into account the two crucial issues associated with CMBS pricing. Our 

numerical results show that property value dependence structure plays an important role 

in determining required yield spreads for various CMBS tranches. Specifically, pool 

diversification are found to have opposing effects on required yield spreads for junior 

CMBS tranches and those more senior CMBS tranches. This confirms the findings in 

Childs, Ott and Riddiough (1996). Moreover, it is shown that property value tail 

dependence is another important determinant of required yield spreads for CMBS bonds. 

This suggests that it is important to allow for the effect of possible extreme events in the 

valuation of CMBS bonds. The neglect of complex mortgage default dependence 

structure and the likelihood of extreme events occurring in pricing CMBS can lead to an 

inaccurate valuation of CMBS bonds. Given that CMBS have become major investment 

instruments for many investment and hedge funds, these results have important 

implication for their investment decisions associated with CMBS bonds. For the fund 

portfolios containing CMBS, the copula-based methodology provides a useful tool for the 

fund managers to identify major risk factors and analyze the sensitivity of CMBS bond 

yield spreads with respect to the risk sources and enable hedging of the risks properly.   
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APPENDIX  

A1. Basic Definitions and Properties 

The theory of copula functions investigates and describes the dependence structure of 

multiple random variables. On one hand, copulas are functions that connect the marginal 

(individual) distribution functions of individual random variables to their multivariate 

distribution function. On the other hand, the copula function provides an analytical 

tractable way of characterizing the dependence structure of joint random variables.
19

  

 

A copula can be defined as follows: 

Definition: Let    :  0,1 0,1
n

C   be an n-dimensional distribution function on  0,1
n

. 

Then C is called a copula if it has uniform marginal distributions on the interval [0, 1]. 

 

Based on the above definition, we have the following fundamental theorem and corollary 

for copulas. 

 

Theorem (Sklar, 1959): Let F  be an n-dimensional joint distribution function with 

marginal distributions    1 1 ,..., n nF x F x . Then there exists a copula functionC , such that 

for all  1,...,  n

nx x R ,  

      1 1 1,..., ,...,n n nF x x C F x F x .        (A1) 

Also, C  is unique if    1 1 ,..., n nF x F x  are all continuous; if not, C is uniquely 

determined on nRanF RanF , where iRanF denotes the range of  i iF x  for 1,...,i n . 

Conversely, if C  is an n-copula function and    1 1 ,..., n nF x F x  are marginal distribution 

functions, then the function F  defined above is an n-dimensional joint distribution 

function with margins    1 1 ,..., n nF x F x . Sklar’s theorem shows that the copula function 
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 See Nelsen, R. (1999) and Cherubini, Luciano and Vecchiato (2004) for a comprehensive introduction of 

copulas. 
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can partition a multivariate distribution into two components, i.e., the marginal 

distributions of the individual random variables and their dependence structure. 

 

The following corollary shows how to obtain the copula of a multi-dimensional 

distribution function. 

Corollary: Let F be an n-dimensional continuous distribution function with marginal 

distributions    1 1 ,..., n nF x F x . Then the corresponding copula C has representation 

      1 1

1 1 1,..., ,...,n n nC u u F F u F u        (A2) 

where 1 1

1 ,..., 

nF F  denote the generalized inverses of the distribution functions 

   1 1 ,..., n nF x F x , i.e. for all  1,..., 0,1nu u  :     1 inf , 1,... .    i i i i iF u x R F x u i n  

 

An important property of copula is the invariance property. That is, if one carries out 

strictly increasing transformations for the underlying random variables, the transformed 

variables have the same copula as the original variables. When the random variables are 

independent, their copula can be simply written as 

     1 1

1 1

,..., ,...,
n n

n n i i

i i

C u u F x x F x u
 

    .     (A3) 

 

On the other hand, the density of the multi-dimensional distribution function F can be 

expressed as follows 

        1 1 1

1

,..., ,...,
n

n n n i i

i

f x x c F x F x f x


       (A4) 

where  .,...,.c  is the density of the copula C 

    
    

   
1 1

1 1

1 1

,...,
,...,

...

n

n n

n n

n n

C F x F x
c F x F x

F x F x

   
 

     (A5) 

and  if  are the densities of the marginal distributions. 

  

Any copula  1,..., nC u u also satisfies the following bounds 
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     1 1 1max ... 1,0 ,..., min ,...,    n n nu u C u u u u .    (A6) 

This inequality is known as Fréchet-Hoeffding Bounds, which represent the largest 

possible positive and negative dependence of the underlying random variables.  

 

An n-copula  1,..., nC u u is non-decreasing in each argument. In particular, its partial 

derivative with regard to iu  exists almost everywhere and satisfies 

 10 ,..., 1


 


n

i

C
u u

u
;  

it also has mixed kth-order partial derivatives almost surely, which for 1 l n , satisfies 

 1

1

,...,
0 1

,...,


 

 

l

n

l

C u u

u u
. 

The properties imply that copulas have nice smoothness conditions. 

 

A2. Tail Dependence 

Tail dependence is a powerful measure of the dependency between the occurrences of 

extreme observations of the underlying random variables, and can therefore be used to 

model probabilities of highly correlated defaults.  

 

Definition (Tail dependence) 

Let  1 2,X X X  be a two-dimensional random vector. Then the upper tail dependence 

of X is defined as 

   1 1

1 1 2 2
1

limPrU
u

X F u X F u  



   
 

,      (A7) 

while its lower tail dependence is  

   1 1

1 1 2 2
0

limL
u

P X F u X F u  



   
 

,      (A8) 

where 1F and 2F  are the marginal distribution functions of 1X and 2X , respectively. 
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A positive probability of positive or negative outliers jointly occurring implies the 

presence of upper or lower tail dependence, respectively. (A7) and (A8) can be rewritten 

as 

 
1

1 2 ,
lim

1
U

u

u C u u

u




 



        (A9) 

and 

 
0

,
limL
u

C u u

u



 .         (A10) 

If U or 0 L , the two random variables  1 2,X X  are asymptotically dependent in the 

upper or lower tail and their extreme observations tend to occur simultaneously with 

probability U or L . On the other hand, if U or 0 L , the two random variables are 

asymptotically independent in the upper or lower tail. That is, the copula has no upper or 

lower tail dependence [(see, e.g., Meneguzzo and Vecchiato (2004)]. 

 

If the two random variables are independent in the upper and lower tails, then 

  2,C u u u  

 
 

1 1

1 2 ,
lim lim 1 0

1
U

u u

u C u u
u

u


 

 
   


 

and  

 
0 0

,
lim lim 0L
u u

C u u
u

u


 
   . 

On the other hand, if 

      
1 1

lim , lim 1 2 1 1
u u

C u u u o u
 

     , 

then 

 
 

1 1

1 2 ,
lim lim 1 0

1
U

u u

u C u u
o u

u


 

 
   


. 

If 

   
0

lim ,
u

C u u o u


 . 

then  
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   
0 0

,
lim lim 0L
u u

C u u o u

u u


 
   . 

The two cases have no tail dependence of the underlying random variables. To analyze 

their tail dependence structure, the copula functions are usually chosen with these two 

limits not equal to zero.  

 

If copulas have no closed-form expressions, we can use the approach of Embrechts, 

Lindskog & Mcneil (1999, 2002) in calculating tail dependence. It is shown that the 

upper tail dependence U can be expressed using conditional probabilities if the 

following limit exists: 

   1 2 2 1
1

limPrU
u

U u U u U u U u


        .     (A11) 

If  1 2,U U have the same marginal distribution of normality or Student-t and the copula is 

exchangeable, then:  

     1 2 2 1 1 2
1 1

limPr 2limPrU
u u

U u U u U u U u U u U u
 

             (A12) 

However, the tail dependent coefficient for the bi-normal distribution is zero, implying 

that extreme events occur independently in each margin. Thus, the Gaussian or normal 

copula does not have a useful tail dependence structure for mortgage default risk 

management.  
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Table 1: Assumptions for Base Case Scenario 

 

Input Parameter Assumption 

Hazard rate of default h = 1.5%  

Risk-free interest rate r = 6% 

Mortgage rate 8.5%rM   

Coupon rate of senior CMBS bond 7.5%Sc   

Coupon rate of mezzanine CMBS bond 8%Mc   

Coupon rate of junior CMBS bond 8%Jc   

 

 

Table 2: Comparison of Yield Spread Estimation 

  

Investment 

Class 

Pool 

Share (%) 

Asset 

Correlation 

Estimated Yield Spreads  

   Gaussian 

Copula  

Student t 

Copula  

Estimates of 

Childs et al (1996) 

Senior 70% 0 0.0000 0.0000 0.0010 

0.5 0.0000 0.0001 0.0009 

1 0.0017 0.0017 0.0008 

Mezzanine 20% 0 0.0000 0.0050 0.0011 

0.5 0.0066 0.0115 0.0059 

1 0.0177 0.0174 0.0166 

Junior 10% 0 0.0803 0.0627 0.0892 

0.5 0.0593 0.0439 0.0746 

1 0.0177 0.0175 0.0476 
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Figure 1: Effect of Correlations on Yield Spreads of Senior Bonds 

(Student-t Copula vs. Gaussian Copula) 
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Figure 2: Effect of Correlations on Yield Spreads of Mezzanine Bonds 

(Student-t Copula vs. Gaussian Copula) 
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Figure 3: Effect of Correlations on Yield Spreads of Junior Bonds 

(Student-t Copula vs. Gaussian Copula) 
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