42 research outputs found
Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image
Powdery mildew, caused by the fungus Blumeria graminis, is a major winter wheat disease in China. Accurate delineation of powdery mildew infestations is necessary for site-specific disease management. In this study, high-resolution multispectral imagery of a 25 km2 typical outbreak site in Shaanxi, China, taken by a newly-launched satellite, SPOT-6, was analyzed for mapping powdery mildew disease. Two regions with high representation were selected for conducting a field survey of powdery mildew. Three supervised classification methodsâartificial neural network, mahalanobis distance, and maximum likelihood classifierâwere implemented and compared for their performance on disease detection. The accuracy assessment showed that the ANN has the highest overall accuracy of 89%, following by MD and MLC with overall accuracies of 84% and 79%, respectively. These results indicated that the high-resolution multispectral imagery with proper classification techniques incorporated with the field investigation can be a useful tool for mapping powdery mildew in winter wheat
Tropical Cyclones and Climate Change
Trabajo presentado en: 10th International Worskshop Cyclones Tropicales, celebrado del 5 al 9 de diciembre de 2022 en Bali, Indonesia.A substantial number of studies have been published since the IWTC-9 in 2018, improving our understanding of the effect of climate change on tropical cyclones (TCs) and associated hazards and risks. They reinforced the robustness of increases in TC intensity and associated TC hazards and risks due to anthropogenic climate change. New modeling and observational studies
suggested the potential influence of anthropogenic climate forcings, including greenhouse gases and aerosols, on global and regional TC activity at the decadal and century time scale. However, there is still substantial uncertainty owing to model uncertainty in simulating historical TC decadal variability in the Atlantic and owing to limitations of observed TC records. The projected future change in the global number of TCs has become more uncertain since IWTC-9 due to projected increases in TC frequency by a few climate models. A new paradigm, TC seeds, has been
proposed, and there is currently a debate on whether seeds can help explain the physical mechanism behind the projected changes in global TC frequency. New studies also highlighted the importance of large-scale environmental fields on TC activity, such as snow cover and air-sea interactions. Future projections on TC translation speed and Medicanes are new additional focus topics in our report. Recommendations and future research are proposed relevant to the remaining scientific questions and assisting policymakers
Equilibrium conditions for semi-clathrate hydrates formed with CO2, N2 or CH4 in the presence of tri-n-butylphosphine oxide
We measured the thermodynamic stability conditions for the N, CO, or CH semiclathrate hydrate formed from the aqueous solution of tri-n-butylphosphine oxide (TBPO) at 26 wt %, corresponding to the stoichiometric composition for TBPO·34.5HO. The measurements were performed in the temperature range 283.71-300.34 K and pressure range 0.35-19.43 MPa with the use of an isochoric equilibrium step-heating pressure-search method. The results showed that the presence of TBPO made these semiclathrate hydrates much more stable than the corresponding pure N , CO, and CH hydrates. At a given temperature, the semiclathrate hydrate of 26 wt % TBPO solution + CH was more stable than that of 26 wt % TBPO solution + CO, which in turn was more stable than that of 26 wt % TBPO solution + N. We analyzed the phase equilibrium data using the Clausius-Clapeyron equation and found that, in the pressure range 0-20 MPa, the mean dissociation enthalpies for the semiclathrate hydrate systems of 26 wt % TBPO solution + N, 26 wt % TBPO solution + CO, and 26 wt % TBPO solution + CH were 177.75, 206.23, and 159.00 kJ·mol, respectively
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Altimetry for the future: building on 25 years of progress
In 2018 we celebrated 25âŻyears of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology.
The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the âGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image
Powdery mildew, caused by the fungus Blumeria graminis, is a major winter wheat disease in China. Accurate delineation of powdery mildew infestations is necessary for site-specific disease management. In this study, high-resolution multispectral imagery of a 25 km2 typical outbreak site in Shaanxi, China, taken by a newly-launched satellite, SPOT-6, was analyzed for mapping powdery mildew disease. Two regions with high representation were selected for conducting a field survey of powdery mildew. Three supervised classification methodsâartificial neural network, mahalanobis distance, and maximum likelihood classifierâwere implemented and compared for their performance on disease detection. The accuracy assessment showed that the ANN has the highest overall accuracy of 89%, following by MD and MLC with overall accuracies of 84% and 79%, respectively. These results indicated that the high-resolution multispectral imagery with proper classification techniques incorporated with the field investigation can be a useful tool for mapping powdery mildew in winter wheat
Study on Transmission Characteristics and Bandgap Types of Plasma Photonic Crystal
A plasma photonic crystal (PPC) was formed using an array of discharge plasma tubes. The transmission spectra and bandstructure of PPCs with different lattice types under different polarization modes were studied through simulation and measurement. To study the types of bandgap in PPCs, the bandstructure of the PPC is calculated using symplectic finite difference time domain (SFDTD), a modified plane wave expansion (PWE) method, and a finite element method (FEM) based on weak form equations. The bandstructure of the PPC is compared with the transmission curve results. The results show that the bandgap is stable in the PPC, and the experimental and numerical results of the transmission spectra agree well. There are different types of bandgap in the PPC; the bandgap under TE-like polarization is caused by localized surface plasmon (LSP) and Bragg scattering. The bandgap under TM-like polarization is caused by the cutoff effect of plasma on the electromagnetic wave and Bragg scattering. The lattice type also affects the position and number of the bandgap. The three methods have their advantages and disadvantages when calculating bandstructure. Therefore, it is necessary to combine the results of three methods and experimental results to accurately determine the bandgap type of the PPC
Influence factors and mechanism of backscattering characteristics of electromagnetic waves in a single layer plasma tube array
A single-row plasma tube array (PTA) experimental system is established to improve the backscattering attenuation of a metal plate covered by a plasma tube array. The backscattering test system is utilized in a microwave anechoic chamber to examine the effects of gas composition, pressure, tube diameter, and discharge power on the backscattering attenuation of a metal plate using a plasma tube array. The electron density is obtained via microwave diagnosis. The backscattering attenuation mechanism in different frequency bands is revealed via numerical simulation. The results show that the reasonable selection of PTA parameters achieves strong attenuation in different frequency bands. The strong attenuation frequency bands of ArâHg PTA are in low frequency (1.5â3.5Â GHz) and high frequency (13â17Â GHz), while that of NeâHg discharge is in medium frequency (6.4â11.7Â GHz). When the pressure is 0.5 and 1 Torr, the PTA shows a low, medium, and high multi-band distribution for the backscattering strong attenuation region. The backscattering strong attenuation region shows a low and high dual-band distribution, while the pressure is 2â4 Torr. As the tube diameter increases, the strong attenuation region maintains the dual-band, but it changes from low and high frequency bands to medium frequency (6-12Â GHz), where the backscattering attenuation mechanism is collisional absorption when the frequency of plasma electron oscillation is close to that of electro-magnetic waves. The backscattering attenuation mechanism in the low frequency band involves the periodic structure of PTA generating local surface plasmon to absorb electromagnetic waves
Polyphenols for the Treatment of Ischemic Stroke: New Applications and Insights
Ischemic stroke (IS) is a leading cause of death and disability worldwide. Currently, the main therapeutic strategy involves the use of intravenous thrombolysis to restore cerebral blood flow to prevent the transition of the penumbra to the infarct core. However, due to various limitations and complications, including the narrow time window in which this approach is effective, less than 10% of patients benefit from such therapy. Thus, there is an urgent need for alternative therapeutic strategies, with neuroprotection against the ischemic cascade response after IS being one of the most promising options. In the past few decades, polyphenolic compounds have shown great potential in animal models of IS because of their high biocompatibility and ability to target multiple ischemic cascade signaling pathways, although low bioavailability is an issue that limits the applications of several polyphenols. Here, we review the pathophysiological changes following cerebral ischemia and summarize the research progress regarding the applications of polyphenolic compounds in the treatment of IS over the past 5 years. Furthermore, we discuss several potential strategies for improving the bioavailability of polyphenolic compounds as well as some essential issues that remain to be addressed for the translation of the related therapies to the clinic