18 research outputs found

    Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation

    Get PDF
    Thyroid dysfunction is an important public health problem, which affects 10% of the general population and increases the risk of cardiovascular morbidity and mortality. Many aspects of thyroid hormone regulation have only partly been elucidated, including its transport, metabolism, and genetic determinants. Here we report a large meta-analysis of genome-wide association studies for thyroid function and dysfunction, testing 8 million genetic variants in up to 72,167 individuals. One-hundred-and-nine independent genetic variants are associated with these traits. A genetic risk score, calculated to assess their combined effects on clinical end points, shows significant associations with increased risk of both overt (Graves' disease) and subclinical thyroid disease, as well as clinical complications. By functional follow-up on selected signals, we identify a novel thyroid hormone transporter (SLC17A4) and a metabolizing enzyme (AADAT). Together, these results provide new knowledge about thyroid hormone physiology and disease, opening new possibilities for therapeutic targets

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications.

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases

    Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Correction Volume: 10, Article Number: 2068 DOI: 10.1038/s41467-019-10160-w WOS:000466339700001General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P <5 x 10(-8)) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.Peer reviewe

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Genetic analysis identifies molecular systems and biological pathways associated with household income

    No full text
    Abstract Socio-economic position (SEP) is a multi-dimensional construct reflecting (and influencing) multiple socio-cultural, physical, and environmental factors. Previous genome-wide association studies (GWAS) using household income as a marker of SEP have shown that common genetic variants account for 11% of its variation. Here, in a sample of 286,301 participants from UK Biobank, we identified 30 independent genome-wide significant loci, 29 novel, that are associated with household income. Using a recently-developed method to meta-analyze data that leverages power from genetically-correlated traits, we identified an additional 120 income-associated loci. These loci showed clear evidence of functional enrichment, with transcriptional differences identified across multiple cortical tissues, in addition to links with GABAergic and serotonergic neurotransmission. We identified neurogenesis and the components of the synapse as candidate biological systems that are linked with income. By combining our GWAS on income with data from eQTL studies and chromatin interactions, 24 genes were prioritized for follow up, 18 of which were previously associated with cognitive ability. Using Mendelian Randomization, we identified cognitive ability as one of the causal, partly-heritable phenotypes that bridges the gap between molecular genetic inheritance and phenotypic consequence in terms of income differences. Significant differences between genetic correlations indicated that, the genetic variants associated with income are related to better mental health than those linked to educational attainment (another commonly-used marker of SEP). Finally, we were able to predict 2.5% of income differences using genetic data alone in an independent sample. These results are important for understanding the observed socioeconomic inequalities in Great Britain today

    Association of common genetic variants with brain microbleeds A genome-wide association study

    Get PDF
    ObjectiveTo identify common genetic variants associated with the presence of brain microbleeds (BMBs).MethodsWe performed genome-wide association studies in 11 population-based cohort studies and 3 case-control or case-only stroke cohorts. Genotypes were imputed to the Haplotype Reference Consortium or 1000 Genomes reference panel. BMBs were rated on susceptibility-weighted or T2*-weighted gradient echo MRI sequences, and further classified as lobar or mixed (including strictly deep and infratentorial, possibly with lobar BMB). In a subset, we assessed the effects of APOE epsilon 2 and epsilon 4 alleles on BMB counts. We also related previously identified cerebral small vessel disease variants to BMBs.ResultsBMBs were detected in 3,556 of the 25,862 participants, of which 2,179 were strictly lobar and 1,293 mixed. One locus in the APOE region reached genome-wide significance for its association with BMB (lead single nucleotide polymorphism rs769449; odds ratio [OR](any BMB) [95% confidence interval (CI)] 1.33 [1.21-1.45]; p = 2.5 x 10(-10)). APOE epsilon 4 alleles were associated with strictly lobar (OR [95% CI] 1.34 [1.19-1.50]; p = 1.0 x 10(-6)) but not with mixed BMB counts (OR [95% CI] 1.04 [0.86-1.25]; p = 0.68). APOE epsilon 2 alleles did not show associations with BMB counts. Variants previously related to deep intracerebral hemorrhage and lacunar stroke, and a risk score of cerebral white matter hyperintensity variants, were associated with BMB.ConclusionsGenetic variants in the APOE region are associated with the presence of BMB, most likely due to the APOE epsilon 4 allele count related to a higher number of strictly lobar BMBs. Genetic predisposition to small vessel disease confers risk of BMB, indicating genetic overlap with other cerebral small vessel disease markers.Cardiolog

    Exome-wide association study of plasma lipids in &gt;300,000 individuals.

    No full text
    We screened variants on an exome-focused genotyping array in &gt;300,000 participants (replication in &gt;280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD
    corecore